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Significance

 Large-scale solar projects are 
crucial for decarbonizing the US 
economy, but growing local 
resistance may impede the 
renewable energy transition. We 
estimate the impact of large-scale 
solar on property prices and the 
underlying pathways using 8.8 
million sales and 3,699 solar sites 
in the United States. Exposure to 
solar sites decreases nearby 
residential home values but 
increases land values. For 
large-lot homes, the increase in 
land value largely mitigates the 
negative residential impact. 
Varying county political leaning 
and land use histories result in 
significantly different residential 
value impacts. Empirical evidence 
indicates that the current negative 
residential impact might 
represent a stigma effect attached 
to solar sites. Our findings 
provide important insights for 
addressing local resistance 
against large-scale solar projects.
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As the renewable energy transition continues into less receptive communities, local 
opposition is expected to intensify, potentially slowing the process. Since the local 
impacts are neither well quantified nor widely recognized, we lack policies and com-
mon practices to mitigate the potential associated welfare loss in affected communities. 
Based on a nationwide dataset combining property transactions and large-scale solar 
photovoltaic (LSSPV) sites, we analyze the heterogeneous effects of LSSPV on property 
prices and the associated causal pathways. Difference-in-differences estimates show that 
LSSPV significantly increases agricultural or vacant land value by about 19.4% within a 
2-mile radius, while simultaneously reducing residential property values within 3 miles 
by about 4.8%. The estimated average negative impact on home values is primarily 
driven by site proximity and diminishes with both distance and time. Effect estimates 
are more robust to alternative specifications when proximity pairs with visibility rather 
than invisibility, but no evidence suggests visibility significantly amplifies the proximity 
effect. Heterogeneous effect estimates indicate that high solar lease potential, being in 
heavily Democratic-leaning counties, and brownfield redevelopment largely mitigate 
the negative residential value impact. The analysis reveals no significant heterogeneity 
across a few factors, including varying site visibility, directional orientation of properties 
relative to the LSSPV site, and different tracking systems. Evidence indicates that the 
negative impact on residential values might mainly stem from negative perceptions, but 
channels through physical conditions cannot be entirely dismissed. Our assessment pro-
vides benchmark information for local externality mitigation plans, potentially reducing 
community opposition and expediting the renewable energy transition.

solar energy | economic valuation | econometric analysis | renewable energy transition

 As the cost of solar energy continues to decline ( 1 ), solar is likely to remain the leading 
source of renewable energy in the United States ( 2 ). Although the climate benefits of 
large-scale solar photovoltaic (LSSPV) are widely recognized, the siting of LSSPV projects 
has encountered increasing local resistance ( 3   – 5 ). As the renewable energy transition 
deepens into less receptive communities, local opposition is expected to intensify and slow 
down the transition process. Anecdotal and qualitative evidence suggests that the local 
concerns are primarily driven by negative aesthetic impacts, decreased property values, 
environmental injustice, and adverse impacts on local agriculture ( 3 ,  6 ,  7 ). However, these 
negative impacts are not well quantified, and we lack policies or common practices to 
mitigate the potential welfare loss in affected communities.

 LSSPV facilities can significantly alter local amenities in residential areas. Recent studies 
suggest that proximity to a solar site may reduce home values ( 8 ,  9 ) due to diminished 
amenities such as adverse visual impact ( 10 ). The geometric and highly reflective surfaces 
of LSSPV facilities can be seen as unattractive and disruptive, particularly in natural or 
agrarian settings ( 11 ). There are other potential disamenities associated with LSSPV that 
may not be revealed immediately after site installation, including disrupted ecosystems 
and wildlife habitats ( 12 ,  13 ), increased soil erosion and water runoff, and degraded air 
quality ( 14 ). Moreover, negative perceptions of disamenities could lead to property value 
losses that are unrelated to actual levels of physical disamenities, a phenomenon known 
as the stigma effect in the housing market ( 15 ,  16 ).

 Solar development can affect land prices considerably. An LSSPV facility typically requires 
between 5 and 10 acres per MWac of generating capacity. Agricultural land has been the 
most common land type for LSSPV development, due to its suitability, such as being flat, 
dry, cleared of natural vegetation, and close to electric infrastructure ( 17 ,  18 ). A recent 
projection from the American Farmland Trust shows that solar projects could occupy over 
7 million acres by 2040, with 83% of new installations on farmlands and ranchlands, half 
of which are on highly productive land ( 19 ). If we consider the potential future surge in D
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energy demand, e.g., electrifying the transportation sector and 
establishing AI data centers, the required farmland for solar energy 
production could be much higher than the projected 5.8 million 
acres. In the long run, the land use competition between solar 
development and agricultural production is likely to increase the 
scarcity of farmlands, especially at the urban fringe. In the short 
run, leasing the land for solar energy production provides higher 
financial returns than traditional agricultural operations, which 
may drive up farmland prices and elevate farming costs.

 Existing studies provide suggestive evidence that visual impacts 
and loss of property values are the two leading concerns for local 
oppositions ( 3 ,  10 ). *   These local impacts of LSSPV represent classi­
cally defined externalities, as no widely established mechanism exists 
for solar site owners to compensate neighboring communities for 
potential negative effects. Quantifying these externalities is important 
to establishing solar siting procedures that adequately compensate the 
community and allow socially optimal allocations of resources. More 
importantly, as solar sites are initially developed in receptive commu­
nities, siting efforts are expected to become more challenging when 
the renewable energy transition continues. Studies have suggested 
that a major proportion of proposed LSSPV projects were denied or 
withdrawn due to local resistance ( 5 ,  10 ). †   Clarifying and addressing 

the externalities of LSSPV development will help alleviate local oppo­
sition to solar development and accelerate the energy transition.

 Utilizing property-level transaction data and detailed LSSPV 
site information, we present a comprehensive nationwide analysis 
to estimate and quantify the externalities of LSSPV facilities facing 
nonresidential and residential properties. We employ a 
Difference-in-Differences (DID) identification framework to 
investigate the effects of solar projects on nearby property values. 
Previous studies have employed similar methods to investigate the 
property value effects of solar site exposure in a few selected states 
( 8 ,  9 ,  20 ). While viewshed analyses and visual impact investiga­
tions are prevalent for wind site studies (e.g., refs.  21       – 25 ), previous 
solar studies have not measured site visibility or quantified the 
associated visual impact, despite some indicating its relevance (e.g., 
ref.  26 ). In contrast to previous solar studies focusing on site prox­
imity, we additionally assess the impact of site visibility and its 
interaction with proximity. Specifically, we create a geospatial 
database showing the visibility from every residential home to 
nearby LSSPV facility in the contiguous United States ( Fig. 1 , see 
﻿Data and Methods  for details). With the average effects showing 
the general size of welfare changes in the neighborhood, we further 
differentiate the impact mechanisms and provide information for 
a compensation plan for the local externalities generated by 
LSSPV sites.        

 Our analysis demonstrates that LSSPV sites affect local residen­
tial property values and land values differently. We separately analyze 
transactions on three types of properties. The first type is residential 
properties (hereafter “residential homes” or “residential”) with a lot 
size under five acres (i.e., the typical minimum acreage require­
ment for a solar lease), where LSSPV effects primarily stem from 
impacts related to residential amenities. The second type involves 
agricultural or vacant land above five acres (hereafter “agricultural 
land” or “ag-land”), where LSSPV effects mainly result from 
potential solar lease-induced land use value changes. The third 

Fig. 1.   Map of LSSPV locations, capacity, and visibility. The size of circles indicates the capacity of each LSSPV site. The colors represent the visibility of each site. 
Visibility is measured in the number of local (<6 miles) residential homes with a view of that LSSPV site.

﻿*  Crawford et al. ( 3 ), based on 33 interviews with residents, found that the top three of 
residents’ most common concerns of large-scale solar are “negative aesthetic impact”, 
“decreased property values”, and “misuse of agricultural land”. Moreover, a survey con-
ducted in 2023 by Nilson et al. ( 10 ) shows that 123 developers report visual concerns to be 
the most common concern for utility-scale solar, followed by property value loss and agri-
cultural land loss.
†An earlier study from Mulvaney (5) showed that nearly half of the LSSPV projects proposed 
from 2005 to 2016 in the Southwest US were denied or withdrawn, largely due to local 
resistance. A survey conducted in 2023 by Nilson et al. (10) suggests that among solar 
industry respondents across the US, 95% agree that community opposition will get in the 
way of decarbonization goals. The same survey shows that about 40% of planned solar 
projects were canceled while the remaining 60% were delayed by at least 6 months in the 
last 5 y, and local ordinances and community opposition are among the leading causes 
of cancellation.
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type includes properties over five acres with residential structures 
(hereafter “large-lot homes”), where LSSPV effects may include 
both residential amenity and land use value impacts. Within the 
analysis of each property type, we further investigate the impact 
heterogeneity across a range of dimensions, including rural–urban 
status, census region, lot size, county political leaning, median 
household income, solar site scale, site historical land use, state 
siting regulation, among others. To make sure our estimates are 
not specific to the five-acre segregation criterion, we conducted 
robustness checks in SI Appendix . ‡   

1.  Results

1.1.  LSSPV Impact on Residential Home Value. We first present 
the results for residential properties under five acres, which include 
approximately 8.3 million property transactions within a 6-mile 
radius of LSSPV sites from 15 y before the installation of each 
site through 2020. Further analytical details are provided in Data 
and Methods.
1.1.1.  Residential proximity and visibility. We first use distance decay 
specifications within the DID framework (see Section 3.5 for model 
details) to decide the proper treatment variable, assuming solar site 
exposure is determined by proximity and visibility. The view-specific 
distance decay results (Fig.  2) show that proximity is the major 
driver of the negative residential value impact. We find that, without 
LSSPV view, LSSPV proximity reduces residential sales price by up 
to 7.2% within a 0.5-mile radius, and the bin-specific estimates 
gradually decrease with distance and remain statistically significant 
up to 3 miles from the LSSPV site. Having LSSPV in the viewshed 
of a home incurs slightly more negative effects (i.e., up to 7.9% 
within 0.5 miles) compared to the pure proximity effects,§ and the 

bin-specific effects also diminish with distance. Beyond 3 miles, both 
the proximity effect and the visibility effect become indistinguishable 
from zero, suggesting that visibility does not independently generate 
negative impacts in the absence of proximity.
1.1.2.  Residential treatment—site within 3 miles. As shown in 
Table 1 column (1), when examining the average treatment effect of 
proximity within 3 miles (regardless of visibility), the estimate is 4.8% 
and statistically significant at the 5% level. We further investigate 
the interaction between proximity and visibility in column (2). 
When the solar site is visible and within 3 miles, property values, 
on average, decrease by about 5.2%. The corresponding effect of 
an invisible site is estimated at 4.6%. While both estimates are 
statistically significant at the 5% level, a statistical test shows that 
the difference between them is not significant at all (test P-value = 
0.746), indicating that site visibility may not impose a significant 
additional average effect beyond proximity and supporting the 
validity of proximity-based specifications in prior studies (e.g., 
refs. 8 and 9). We also checked an alternative specification that 
excludes no-view properties within the 3-mile radius in column (3) 
of Table 1, which provides a similar interaction effect of visibility 
and proximity. These average effect analyses, combined with the 
distance decay results, suggest that site proximity alone largely 
drives the residential home effect. Consequently, site proximity 
within a 3-mile radius [as presented in Table 1 column (1)] serves 
as the principal treatment variable, representing LSSPV exposure, in 
subsequent event study and heterogeneity analyses. Examining the 
sensitivity of estimates to alternative control group specifications in 
SI Appendix, Table S6, we find that the interaction effect of visibility 
and proximity remains robust across the board, while the pure 
proximity effect becomes insignificant in some of the alternative 

Fig. 2.   Effects of proximity and view on residential home value. The blue line 
connects the coefficient estimates of proximity bins without view, obtained 
by interacting the proximity bins, the binary posttreatment indicator, and 
the no-visibility indicator (i.e., equals 1 if no site view). The red line connects 
coefficient estimates of proximity bins with view, obtained by interacting the 
proximity bins, the binary posttreatment indicator, and the visibility indicator 
(i.e., equals 1 if with site view). The number of observations (N) in this analysis 
is 8,303,074, excluding singleton observations on the census-tract by year level. 
The 95% CIs are constructed with two-way clustered SEs at the census tract 
and year level. The control group is properties in the 5-to-6-mile proximity bin.

﻿‡  The results are presented in SI Appendix, Table S8 , which suggest that the main estimates 
are robust to alternative acreage thresholds for segregating the small-lot properties and 
large-lot properties (e.g., 5 miles to 0.3 miles for small-lot properties and 5 miles to 9 miles 
for large-lot properties). Therefore, the main conclusions of this study are not sensitive to 
changes in the five-acre threshold.

Table 1.   DID Estimates for Residential Homes
(1) (2) (3)

﻿  ProxT  ProxT × ViewT  ProxT × ViewT

 ProxT  −0.076** ﻿ ﻿

﻿  (0.022) ﻿ ﻿

  �
3
    : ProxT × Post  −0.048* ﻿ ﻿

﻿  (0.020) ﻿ ﻿

 ProxT × 0.ViewT ﻿  −0.078** ﻿

﻿ ﻿  (0.022) ﻿

 ProxT × 1.ViewT ﻿  −0.070**  −0.044

﻿ ﻿  (0.023)  (0.029)

  �no_view
3

    : ProxT × 
0.ViewT × Post

﻿  −0.046*(0.020) ﻿

  �view
3

    : ProxT × 
1.ViewT × Post

﻿  −0.052*  −0.046+

﻿ ﻿  (0.020)  (0.023)

 N  4975808  4975808  2444983

 Covariates  Yes  Yes  Yes

 Census 
Tract × Year

 Yes  Yes  Yes

 Test (  H
0
    :  �no_view

3

= �view
3

    ): z-Statistic = 0.324 P-value = 0.746
Note: In Column (1), ProxT, standing for site proximity below 3 miles, is used as the treat-
ment. In Column (2), proximity without view (ProxT×0.ViewT) and proximity with view 
(ProxT×1.ViewT) are used as treatment. In Column (3), properties that satisfy ProxT = 1 
and ViewT = 0 are excluded. �

3
 s represent the treatment effects specified in Section 3.5.1. 

SE, two-way clustered at census tract and year level, are reported in parentheses: +P < 
0.1, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. Census tract by year fixed effects and property-level 
covariates are included in all specifications but not displayed. The control group is prop-
erties in the 5-to-6-mile proximity bins of the LSSPV sites, and properties located within 3 
to 5 miles from the LSSPV sites are excluded. The number of observations, N, is calculated 
excluding singleton observations on the census-tract by year level. The coefficient for Post 
is omitted due to collinearity with fixed effects.

§As pointed out in the Data and Methods section below, our visibility measure potentially 
overrepresents the true visibility especially when the viewpoint and the target are close, 
limited by structural elevation data availability (36). This measurement bias introduces 
attenuation in the treatment variable, potentially leading to an underestimation of the 
visibility impact (and hence the difference between visibility and proximity impact in Fig. 2).D
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specifications. This implies that site visibility appears to reinforce 
the proximity effect in the sense that it improves the robustness of 
the home value effect estimate across various alternative control 
group specifications. To provide a comprehensive view of the 
proximity effect, we present both the specifications from column (1) 
and column (2) in the pretrend tests and robustness checks in the 
SI Appendix. Pretrend tests with placebo treatments in SI Appendix, 
Table S5 show that the parallel trend assumptions are satisfied for 
all specifications in Table 1. More robustness checks in SI Appendix, 
Tables  S8 and S9 confirm that all estimates in Table  1 remain 
consistent when applying alternative sample selection criteria based 
on acreage and the number of observations per tract-year cluster.
1.1.3.  Residential event-study results. We explore the timing 
of the LSSPV exposure effect (i.e., site visible within 3 miles) 
based on an event study where the base year is specified as 3 y 
prior to the LSSPV installation¶ (Fig. 3). The average negative 
price impact on residential homes is minor after the base year 
but becomes pronounced following the installation. The effect 
generally maintains its magnitude over time and fades after the 
ninth year postinstallation. There are potential explanations for 
the observed effect dynamics. Right after the base year, the gradual 
dissemination of the LSSPV site information may not have reached 
many home buyers or led them to fully realize the potential 
negative price impact of the site, but the installation event makes 
the impacts clear and manifested in the market. The diminishing 
effect after 9 y might come from the shrinking sample size as 
most of the LSSPV sites were developed after 2010. However, if 
the diminished effect is true, it does not necessarily imply that 
the negative amenity impacts disappear after 9 y since many of the 
negative impacts, such as soil erosion and dust pollution, may take 
a long time to manifest (14, 27, 28). A more plausible explanation 
of the faded price impact may be linked to residential sorting 
and demographic shifts (29–31), as individuals less concerned 

about LSSPV facilities move into the affected neighborhoods. 
This indirectly suggests that the negative price impact might be 
more closely related to psychological factors than to the amenities 
themselves, which will be explored further in subsequent analyses 
and discussions.
1.1.4.  Residential Effect Heterogeneity. We explore the heteroge­
neity of LSSPV exposure effect on residential homes across various 
dimensions, as shown in SI Appendix and Fig. 4.# We observe 
noticeable heterogeneity across census regions, county political 
leaning, county median household income, and historical land 
use of the LSSPV sites. Statistical tests results are available in 
SI  Appendix, Table  S10. LSSPV sites in the Northeast region 
impose significantly more negative impacts than those in 
other regions. Heavily Democratic-leaning counties (over 65% 
Democratic votes in 2016) experience a positive LSSPV effect 
(+0.0374, insignificant), which is significantly different from 
more politically conservative counties (−0.0538, significant at the 
5% level). Greenfield LSSPV development leads to a negative 
effect (−0.0466, significant at the 10% level), while brownfield 
redevelopments lead to a positive residential value effect (+0.225, 
significant at the 10% level), significantly different from the 
effect of Greenfield LSSPV.|| Observed differences along other 
dimensions are not statistically significant. Moreover, we observe 
almost zero heterogeneity across different rural status, different lot 
sizes, different site capacities, and different levels of site visibility. A 
higher level of visual exposure (“High View” in Fig. 4) or directly 
facing the solar panels (i.e., in the south of the solar panels, 

Fig. 3.   Event study on residential home value. The treatment (LSSPV site within 3 miles) effect on residential home values is illustrated across different years 
relative to the year of LSSPV installation. The blue squares on the black line indicate the coefficient estimates, obtained by interacting the treatment variable 
with year indicators. The reference year is defined as 3 y before the LSSPV installation, and the control group is properties in the 5-to-6-mile proximity bin. The 
shaded areas represent the 95% CIs, constructed using two-way clustered SEs at the census tract and year level.

﻿#  We also investigate the heterogeneous pure proximity and visible proximity effects in 
﻿SI Appendix Fig. S7 . The results show that both effects have very similar heterogeneities as the 
main results in  Fig. 4 : the negative property value impact is significantly higher in more polit-
ically conservative counties, and brownfield sites may have a positive property value impact.

﻿¶  This approximately represents the time when some residents may become aware of the 
upcoming LSSPV site through permitting, contracting, community engagement, or other 
site preparation activities.

||Brownfields include sites such as hazardous waste facilities, abandoned contaminated 
areas, and inactive mines (53). Solar projects on brownfields often require site cleanup, 
which can reduce negative externalities and undesirability of these sites and positively 
affect property values. This aligns with Gaur et al. (54), who found that residents are willing 
to pay more for solar projects on brownfields, as these sites are otherwise undesirable. 
Meanwhile, respondents in Gaur et al. request compensation for solar project developed 
on greenfields, suggesting that they perceive brownfields as the more appropriate land 
type for LSSPV development than greenfields.
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“Facing” in Fig. 4) does not lead to a more negative residential 
value effect, providing further evidence that more view exposure 
may not lead to significantly more negative impacts. While we lack 
direct data on glint and glare effects, indirect evidence suggests 
they may not be a primary mechanism, as we find no evidence to 
support that being exposed to a site with tracking systems (i.e., 
potentially more susceptible to glare impacts, “Tracking” in Fig. 4) 

or facing the solar panels lead to more negative impacts. Instead of 
visual levels or details, impacts appear to stem from psychological 
factors, such as negative perceptions of industrialization and 
altered scenic views. These negative perceptions are expected to 
be amplified by conservative ideology or mitigated by progressive 
ideology, aligning with the empirical finding that more politically 
conservative counties are associated with more negative impacts.

Fig. 4.   Heterogeneous effects of LSSPV exposure by different dimensions. Diamonds are the point estimate of the effect of LSSPV on nearby residential home 
values based on DID models. The treatment is LSSPV within 3 miles, and the control group is properties in the 5-to-6-mile proximity bin of the LSSPV site. The 
95% CIs of the estimates are shown as bars, having clustered SEs at the census tract and year level. Check SI Appendix for the details of all factors investigated 
here. More heterogeneity checks differentiating visible and invisible sites are available in SI Appendix, Fig. S7.

Fig. 5.   Distance decay results for agricultural/vacant land and large-lot homes. The top subfigure shows estimates for agricultural and vacant land above five 
acres. The bottom subfigure shows estimates for large-lot homes, defined as properties over five acres with residential structures. The results show the value 
effects of LSSPV for a range of proximity bins, defined with 2-mile intervals. The blue line connects the coefficient estimates of proximity bins, obtained by 
interacting the proximity-bin indicators with the binary posttreatment indicator. The treatment groups are properties within these proximity bins, while the 
control group is properties within the 18-to-20-mile proximity bin. The 95% CIs are constructed with two-way clustered SEs at the county-site and year level.D
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1.2.  LSSPV Impact on Agricultural Land Value. Our Ag-land 
analyses show that having LSSPV sites within 2 miles of agricultural 
or vacant land increases the sales price per acre by an average of 
19.4%,** which is statistically significant at the 5% level (Fig. 5). 
The positive effect rapidly declines and becomes insignificant beyond 
2 miles, similar to estimates in ref. 32. This positive effect is likely 
due to the demand increase from potential solar leases, as further 
expansion of existing LSSPV sites is less costly than constructing 
new sites and likely involve nearby agricultural or vacant land. 
Pretrend tests in SI Appendix, Table S5 show that the parallel trend 
assumptions are satisfied. Robustness checks in SI Appendix, Table S7 
suggest that our main ag-land estimate is robust against different 
control group selection criteria. Event-study results in SI Appendix, 
Fig. S5 show that the positive land value effect manifests 3 y after 
the site installation and fades away 6 y later. SI Appendix, Fig. S6 
presents our analysis of heterogeneous ag-land effects. We find that 
LSSPV sites of larger than-median scale have virtually zero effect 
on land value, while sites of smaller scale display a positive effect on 
land value (significant at the 10% level). Considering that smaller 
sites have a larger potential for expansion, this observation seems 
to confirm our speculation that the nearby land value increase is 
mainly driven by the potential of future solar lease. We also find 
that agricultural or vacant lots of large acreage bear virtually zero 
effect while smaller lots show a significantly (at the 5% level) positive 
effect. However, these differences are not statistically significant. 
More robustness checks in SI Appendix, Table S8 suggest that our 
land value estimates remain consistent when applying alternative 
sample selection criteria based on acreage. Finally, robustness checks 
in SI Appendix, Table S9 reveal that when focusing solely on county-
site-year clusters containing more than a few sales, the land price 
effect of LSSPV rises dramatically, reaching 86.1% when excluding 
less-than-20-land-sales clusters (corresponding to a coefficient of 
0.621). Given that we have excluded sales of land hosting LSSPV 
sites, the mechanism behind this substantial effect on land prices 
remains unclear but warrants further investigation.

1.3.  LSSPV Impact on Large-Lot Home Value. Our empirical 
results show that LSSPV sites have a dual effect: they decrease 
residential property values via reduced residential amenity, while 
simultaneously increasing nearby land prices due to enhanced 
land use potential. For large-lot residential homes with over five 
acres of land, we expect the LSSPV to impact property values 
through both channels. Our distance decay analysis (Fig.  5, 
Bottom) suggests that the overall LSSPV impact on large-lot home 
price is close to zero and statistically insignificant for all nearby 
proximity bins. Robustness checks in SI Appendix, Tables S8 and 
S9 confirm that these large-lot-home estimates remain small and 
insignificant when applying alternative sample selection criteria 
based on acreage and the number of observations per tract-year 
cluster. Therefore, the LSSPV property value impacts via amenity 
reduction and increased land use potential seem to offset each 
other in residential homes with over five acres of land.

2.  Discussion

 This study provides a comprehensive nationwide assessment of the 
externalities associated with LSSPV installations in the United 
States focusing on their impacts on property values. We leverage 
a rich property transaction dataset with detailed geospatial 

information of LSSPV sites to estimate the effects on both resi­
dential properties and agricultural/vacant land. We apply advanced 
geospatial methods to overcome computational challenges and 
develop a comprehensive nationwide database on LSSPV visibility. 
Our findings reveal that LSSPV installations negatively affect the 
value of residential properties located within 3 miles, while increas­
ing prices for agricultural and vacant land within 2 miles. Moreover, 
when the impacts through reduced residential amenity and 
increased land use potential coexist, the LSSPV effect on large-lot 
homes is indistinguishable from zero. We also explore the dynamics 
and heterogeneities of the local property value effects of LSSPV.

 Our analyses and heterogeneity checks indicate that a nearby solar 
site may act as a stigmatizing nuisance (i.e. a psychological disamen­
ity, see refs.  15 ,  16 ,  33 ) and  34 ). Evidence supporting this claim 
includes the minimal variation in effects across different levels of site 
visibility, in effects across properties to the south and to the north 
of the site, and in effects across sites with different tracking systems, 
as they suggest that the view details of solar sites (including view 
extent, the exact view composition, and potential difference in glare 
effects) do not significantly impact residential values. The negative 
impact on nearby residences appears to operate primarily through 
psychological channels rather than through the degree of visibility 
or specific visual details. Considering disamenities other than visual 
impact, the scale of the site likely results in different disamenity levels 
and impacts, but this is also not observed (i.e., “Big USS” vs. “Small 
USS” in  Fig. 4 ). One explanation can be linked to negative percep­
tions that solar sites are industrial/commercial uses that alter rural 
land use and scenic views ( 15 ). The disparities in effects between 
brownfield and greenfield sites align with this mechanism. Another 
piece of evidence is the significantly higher property value loss in 
more conservative counties compared to Democratic-leaning coun­
ties. This disparity is likely due to solar sites being more aligned with 
progressive values prevalent in Democratic-leaning counties and less 
frequently associated with negative perceptions. However, we cannot 
entirely rule out causal channels related to actual disamenity varia­
tions. First, our nationwide analysis may obscure heterogeneities 
under certain conditions – for example, sites with a larger scale may 
have a stronger negative effect in the Northeast but a weaker one in 
the West, potentially canceling out in a pooled sample. Second, 
unexplored physical channels, such as vegetation and soil manage­
ment practices (e.g., refs.  9  and  27 ), might also contribute to the 
negative LSSPV impact on residential values.

 Our findings highlight the complex interplay between the benefits 
and costs of LSSPV development. In SI Appendix, Table S11 , we 
performed a back-of-the-envelope calculation to estimate the benefits 
and costs of LSSPV solar sites included in our analysis, including the 
mitigation value (i.e., avoided social cost of carbon emission), the 
appreciation of nearby agricultural or vacant land value, the value loss 
of nearby residential properties, and the agricultural production loss 
on land utilized for hosting LSSPV. The results suggest that the 
assessed benefits of existing LSSPV significantly outweigh the assessed 
total costs. The carbon mitigation benefit is the major benefit (about 
$22.2 billion annually), while the loss in residential home value is the 
dominant cost (about -$4.1 billion annually). Therefore, property 
value losses constitute a major proportion of negative externalities of 
LSSPV. While the expansion of solar energy is crucial for the renew­
able energy transition, it is imperative to address the localized exter­
nalities to ensure equitable outcomes for affected communities. 
Quantitative evidence, such as that generated by this study, can inform 
policymakers and stakeholders in designing compensation mecha­
nisms and siting strategies that mitigate negative impacts while pro­
moting the broader adoption of solar energy.

﻿**  The coefficient estimate is 0.177, which reflects the effect on the logarithm of price. When 
this is converted to the actual proportional price effect, the result is  e0.177   − 1 = 19.4%.
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 To illustrate how our results or similar studies could be used to 
develop a community compensation plan, we design a prototype 
evidence-based community compensation plan for a site proposal 
in (SI Appendix, Fig. S12 ). First, property value impact studies 
should be carefully conducted with empirical data from comparable 
solar sites (e.g., similar size, similar demographics, in counties or 
states of similar regulations, etc.), where the effect of distance decay, 
dynamics, and heterogeneities across a wide range of dimensions 
should be analyzed. The sample choice of LSSPV sites needs to 
balance site similarity and statistical power of analysis. Second, based 
on the property value study, compensation specifics should be 
decided for different properties in the neighborhood. Taking our 
main results as an example, compensation rates could be set at 5.2% 
of the annualized property value for 10 y for residential homes within 
3 miles of the LSSPV site with a site view, 4.8% for those without 
a view, and 19.4% of annual agricultural land rental costs ††   for 4 y 
for leasing farmers within 2 miles. Third, the community compen­
sation plan can involve communication with stakeholders ahead of 
the permitting process, and stakeholders’ input should be involved 
in the revision process before reaching a final plan. A comprehensive 
compensation plan should also consider local externalities that might 
not visibly manifest in property prices. We would like to stress that 
the specific community compensation plan developed based on our 
nationwide study here should be merely taken as an example, and 
we recommend conducting targeted studies to determine appropri­
ate community compensation plans for a specific LSSPV site.  

3.  Data and Methods

 The analysis primarily utilizes data of three categories: The US 
LSSPV data, the real estate transaction and assessment records, 
and geospatial data. 

3.1.  LSSPV Data. The LSSPV data acquired from the US Large 
Scale Solar Photovoltaic Database (USPVDB) (35) contain 3,699 
LSSPV facilities investigated in the study. This dataset provides 
detailed information on LSSPV site footprint, area, capacity, and 
installation year, spanning from 1986 to 2021 (SI Appendix, Fig. S1 
shows the total acreage developed per year, and SI  Appendix, 
Table S1 shows the summary statistics of LSSPV projects). The 
facility polygons are digitized along the boundaries of the solar 
arrays, within an accuracy of 10 m.

3.2.  Property Transaction. The property data are purchased from 
CoreLogic through a data agreement. CoreLogic data contain 
comprehensive information on property and transactions from the 
whole United States and enables researchers to work on property-
level research questions. We developed a process to exclude non-
arm’s-length transactions (i.e., purging price outliers, foreclosure 
sales, multiple sales, sales between relatives, sales involving institutional 
buyers or sellers, and others as detailed in SI Appendix) so that our 
analyses only include transactions reflecting fair market values. The 
transaction prices are adjusted for inflation to reflect their values 
in 2017 dollars using the Consumer Price Index data from the 
US Bureau of Labor Statistics. We also exclude potential home 
flipping events by removing transactions of the same property that 
occur within 120 d of each other. As the majority of LSSPV sites 
have been developed within the past decade, we keep transactions 
up to 15 y before the installation of nearest LSSPV to make the 
time frame generally centered around the LSSPV development. 

The final dataset for analysis comprises both single-family 
residential properties and agricultural or vacant land, spanning 
40 states‡‡ from 1993 to 2020. To avoid the potential impact from 
market disequilibrium, we drop observations during the Great 
Recession (i.e., 2008 to 2010). SI Appendix, Tables S2–S4 show 
the summary statistics of residential homes, agricultural and vacant 
land, and large-lot homes, respectively. SI Appendix, Figs. S2–S4 
illustrate the distribution of post-LSSPV-installation transactions 
of residential homes, agricultural or vacant land, and large-lot 
homes, respectively, across different proximity bins.

3.3.  Geospatial Data. The geospatial data consist of a collection of 
geographic layers obtained from the US Census Bureau TIGER/
line geodatabase (USCB TIGER) and US Energy Information 
Administration (EIA), which includes shapefiles of primary 
roads, transmission lines, and metropolitan areas. To support 
heterogeneity analyses, we also collected data on median household 
income, median land values, political leanings, and state-level 
siting policies, among other factors (see SI Appendix for details).

 To acquire solar site proximity and other (dis)amenities, we gen­
erated geographic variables that represent the Euclidian distance 
between a property and the boundary of the nearest five solar sites, 
transmission line, primary road, and metropolitan area. The geo­
graphic variables were then matched with the property data. To 
alleviate identification concerns that attributes of control observa­
tions (i.e., properties far away from sites) might considerably deviate 
from treated observations (i.e., properties with solar site exposure), 
we only kept residential homes that are less than or equal to 6 miles 
away from the nearest solar sites. For properties above five acres (i.e., 
agricultural land or large-lot homes), we use a 20-mile radius inclu­
sion criterion due to the general low density and low transaction 
volumes of such properties. The final sample includes 8.3 million 
transactions for residential homes, 68 thousand transactions for 
agricultural or vacant land, and 416 thousand transactions for 
large-lot homes.  

3.4.  Visibility Analysis. We establish a visibility database for 
LSSPV across the continental United States and investigate the 
property value effect of LSSPV visibility. We calculate the visibility 
from residential properties to large-scale solar sites within 6 miles. 
This visibility analysis proceeds in three steps. First, we acquire 
Digital elevation models (DEMs) of the continental United States 
from the Shuttle Radar Topographic Mission (SRTM) produced 
by NASA.§§ Our analysis uses the 2018 version of SRTM DEMs at 
a resolution of 90 m by 90 m. The DEMs employed reflect terrain 
elevation but may not capture structures (e.g., houses or trees), and 
hence could overstate visibility especially when the viewpoint and 
the target are close (36). Nonetheless, the employed DEMs are the 
best available public data for our analysis, as structural elevation 
data (e.g., Light Detection and Ranging, or LiDAR, data) are not 
available for most solar sites and their neighborhoods.

 Second, we calculate the viewsheds from solar sites to decide 
the areas from which the sites are visible, utilizing the duality of 
vision following ref.  21  (i.e., if and only if viewpoint A has a view 
on target B, a viewpoint on B has a view on target A). This 
approach greatly reduces computational effort since the number 

﻿††  Note that this compensation assumes that the land price increase will induce a similar 
change in land rent costs. If land rent data is available, it could be used as the outcome in 
a similar DID study to decide the land rental cost impact of LSSPV site, which could serve 
as the baseline of the compensation to leasing farmers.

﻿‡‡  The other ten states (i.e., Alaska, Hawaii, Idaho, Kansas, Louisiana, Maine, Mississippi, 
Montana, Utah, and Wyoming) are excluded from the final analysis due to the absence of 
LSSPV sites, a lack of available transactions near LSSPV sites, or their non-continental 
status.
§§DEMs provide crucial information on the ground topography of the study area. The Shuttle 
Radar Topographic Mission by NASA employs remote sensing technology to gather laser 
light measurements of the earth’s surface. The mission started in 2000, with a goal to create 
the first near-global topographical map of Earth and collect data on nearly 80 percent of 
the planet’s land surfaces. Data are available at https://srtm.csi.cgiar.org/.D
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of solar sites (3,699) is much smaller than the number of proper­
ties (about 5.9 million). Unlike the wind turbines that require 
height specifications for accurate viewshed analyses, LSSPV sites 
span broad areas, necessitating a proper way to account for partial 
views of a large solar site. Specifically, we set viewpoints along the 
perimeter of each site, where the viewpoints are defined with a 
random start point, an interval distance D , and a height of two 
meters. In practice, D  is set at 500 m to balance the computation 
workload and the accuracy of partial view accounting.

 Third, we aggregate the viewsheds from all site perimeter view­
points and overlay the aggregated viewshed layer with properties 
to calculate the visibility variables. The aggregation of viewsheds 
will generate the visibility index ( Fig. 6 ) for each geographic unit 
defined by the raster resolution (90 m by 90 m). Overlaying with 
the property layer, the visibility index will represent the number 
of perimeter viewpoints that can see a property, or the number of 
solar site perimeter points that the property has view on based on 
the duality of vision. This property-specific visibility index quan­
tifies the extent of solar site visibility for each property and can be 
converted into a binary visibility variable that serves as the treat­
ment variable in a DID model. For more details of the visibility 
analysis, refer to Visibility Analysis  Details section in SI Appendix .          

3.5.  Econometrics: Property Value Effect Models. Previous studies 
have used econometric models to analyze and identify a variety of 
characteristics that could consistently influence property values, 
such as the productivity of the farmland (e.g., ref. 37), the influences 
of urbanization (e.g., ref. 38), and environmental factors (e.g., refs. 
39–41). To estimate the impact of solar projects on nearby property 
values, it is crucial to control for potential confounders. We employ 
a DID approach to investigate the effects of LSSPV installation 
on nearby property values. Intuitively, this approach compares the 
change in property values before and after installation for properties 

close to the LSSPV site against the value change for properties 
farther away but still within the defined vicinity.
3.5.1.  Analyses for residential homes. The general DID framework 
of our residential home study is as follows:

ln
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   In Eq.  1  , each observation corresponds to a transaction of resi­
dential home  i  that occurred in year  t  , with the dependent variable 
being the natural logarithm of transaction price  ln

(

Pit

)

  .  Postit  is a 
binary indicator that denotes whether the transaction of residential 
home happened after the LSSPV installation.  Ti  is the binary indi­
cator that denotes whether a residential home was assigned to a 
treatment group, and the exact definition of treatment is explained 
below. The coefficient  �3  associated with the interaction term 
between  Postit  and  Ti  captures the impact of LSSPV installation on 
the outcome variable, which resembles a proportional change in the 
residential home prices. Previous studies show that the proximity to 
transmission lines could have an impact on the value of nearby prop­
erty ( 42 ), and this impact could change after an LSSPV installation 
in the vicinity ( 20 ). To account for housing and lot characteristics 
that could affect home values and the estimation of  �3  , we include 
property-level control variables  X k

it
  and  Postit × X k

it
  ( 43 ,  44 ), where 

﻿X k

it
    include total bedroom number, total bathroom number, building 

age, and natural logarithms of distances to the nearest transmission 
line, the nearest primary road, and the nearest metropolitan area. To 
absorb the time-varying external location-specific shocks in the hous­
ing market, we incorporate fixed effects on the census tract by year 
level, denoted as  �ct . All SE are two-way clustered at the census tract 
and year level.

[1]

Fig. 6.   Surface of Visibility Index. The visibility index measures the number of visible perimeter points of nearby solar sites. Intuitively, the red color denotes 
regions with solar view, and regions in darker red can see a larger area of solar panels.
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   To detect the proper site-proximity treatment in the average 
effect models (i.e., Eq.  1  ), we employed a distance decay version 
of the DID approach, as shown in Eq.  2  . The distance decay study 
uses proximity intervals ( Tm

i
, ∀m ≤M − 1 ) as the treatment var­

iables instead of a single binary treatment (as  Ti    in Eq.  1  ). The 
distance-decay model shown in  Fig. 2  uses 0.5-mile intervals from 
0 to 6 miles, with properties in the 5 to 6 mile ring (i.e.,  TM

i
 ) 

serving as the control group. To investigate the role of visibility, 
we further interact the proximity intervals with a binary visibility 
variable to produce the results in  Fig. 1  (i.e., the treatment varia­
bles become  Tm

i
× 1(View = 1)    and  Tm

i
× 1(View = 0) ). The 

model specifications in Eq.  2   are identical to Eq.  1   except for 
differences in the treatment variables,

﻿﻿
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   Based on the proximity cut-off point suggested in the distance 
decay results, we specify a proximity treatment (i.e., results suggest 
properties within 3 miles) for the average treatment model in Eq.  1  . 
Moreover, we can test the average treatment effect of the interaction 
between visibility and proximity, by slightly modifying Eq. ﻿1   to allow 
for two treatment groups [i.e., effects shown as  �view

3
    and  �no_view

3
    

in  Table 1  column (2)]. The empirical results of these specifications 
decide the appropriate treatment to use for subsequent studies, 
where the control group specification will also be consistent with 
the exploratory specifications. ¶¶   Details of subsequent event study 
and heterogeneity analyses are presented in SI Appendix .

   Our DID model relies on the assumption that the LSSPV siting 
process is independent of the price trends over time conditional 
on the covariates (i.e., the parallel trends assumption). We conduct 
pretrend tests with placebo treatments by setting a pseudo-post 
variable mimicking a fake installation event 6 y before the actual 
installation and dropping observations that are actually treated 
after the actual site installation. Null effect estimates from the 
placebo tests support the plausibility of the parallel trends assump­
tion. Moreover, the event study model could also display pretreat­
ment effects where pretreatment trend differences would show up 
and suggest a violation of the parallel trends assumption.  
3.5.2.  Analyses for agricultural land and large-lot homes. We use 
a distance-decay model to detect the cut-off proximity for the 
treatment variable in the DID analysis for agricultural or vacant land 

and large-lot homes as the potential impact mechanism is related to 
site proximity. The ag-land distance-decay model is built on Eq. 2 
with three key differences. First, the outcome variable is the natural 
logarithm of land price per acre. Second, the control variables X k

it
 

do not include house characteristics. Finally, based on the volume of 
ag-land transactions, the proximity intervals are selected every two 
miles from 0 to 20 miles, the fixed effects used are on the county-site 
(i.e., an interaction between county and the LSSPV site identifier)## 
by year level, and the SE are two-way clustered at the county-site and 
year level. We also conduct the event study and heterogeneity analyses 
using the treatment variable suggested by the ag-land distance-decay 
model. Furthermore, we conduct pretrend tests for the ag-land 
analysis to check the plausibility of parallel trends assumption. The 
large-lot-home analysis retains the outcome and control variables 
from the residential analysis while adopting the same proximity bins 
and fixed effects used in the ag-land analysis. More details of ag-land 
and large-lot-home analyses are provided in SI Appendix.

Data, Materials, and Software Availability. Our replication package 
(https://github.com/Starfallchen/SolarViewHedonic) provides all code 
used in this study, including Stata and Python code for raw data process-
ing, geospatial variable processing, viewshed analysis, data aggregation, 
and estimation analysis (45). All analyses are conducted in Stata 18MP 
(https://www.stata.com/order/) (46) and Python 3.9.18 https://www.python.
org/downloads/release/python-3918/) (47). The replication package also 
shares datasets that are from unrestricted data sources. The property trans-
action data are acquired from CoreLogic Solutions, LLC (https://www.core-
logic.com/360-property-data) (48). Restricted by contract with CoreLogic, 
all variables derived from raw CoreLogic data will not be shared. To replicate 
our study, we recommend acquiring CoreLogic national-level property data 
with transactions from 1993 to 2020 and applying the data processing 
code in the replication package. Other raw data are from publicly available 
sources. The large-scale solar site data are available at the US Large Scale 
Solar Photovoltaic Database webpage: https://eerscmap.usgs.gov/uspvdb 
(49). Digital Elevation Models in the viewshed analysis are produced by 
NASA’s Shuttle Radar Topographic Mission and available at https://srtm.
csi.cgiar.org (50). Geospatial data on states, counties, census tracts, pri-
mary roads, and metropolitan areas are from US Census Bureau TIGER/line 
geodatabase, available at https://www.census.gov/geographies/mapping-
files/time-series/geo/tiger-geodatabase-file.html (51). Geospatial data on 
transmission lines are obtained from US Energy Atlas hosted by Energy 
Information Administration, available at https://atlas.eia.gov/search (52). 
Data for heterogeneity analysis are drawn from multiple public sources, 
with details described in the SI Appendix.
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Context 
In response to stakeholder questions, this report summarizes the academic and non-academic 
literature about the impact of Wisconsin solar farms on nearby property values (both farmland 
and homes). We found several studies that examined impacts on home values and three that 
analyzed the impacts of solar farms on agricultural land values. Published results were generally 
mixed – studies found positive, negative or no statistical effect of solar farms on nearby property 
values or sales prices. However, a new comprehensive study (Hu et al. 2025) likely settles the 
academic debate for the time being, so we have updated our April report to reflect these new 
findings. We summarize the results from these studies and then discuss implications for 
Wisconsin and the importance of public perception for these effects. 
 
Highlights 
• Based on a new comprehensive study, agricultural land values jump 19.4% for properties 

within 2 miles of large-scale solar farms, but this effect is temporary, peaking 3 years after 
installation and dissipating within 6 years. 

• Based on this same study, residential properties within 3 miles of a large-scale solar farm 
experience price declines of 4.8%, but this effect fades within 9 years of installation. 

• We found no comprehensive study that specifically covered Wisconsin. 
• Larger effects seem possible for agricultural land in Wisconsin because more areas have 

specialized agricultural needs with more limited availability of land to replace losses. 
• Public perception of large-scale solar farms and proximity play a key role in these effects, 

while perceptions of community-scale solar farms remain unclear.  
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Primary Findings 
Early peer-reviewed research produced mixed findings – some found positive effects, while 
others found negative effects or no statistically significant effects. The new comprehensive 
analysis of Hu et al. (2025) reveals a consistent pattern: farmland prices jump near large-scale 
solar installations while nearby home prices dip, and both effects diminish with distance and 
time. This is the average effect – home and farmland values are highly variable because the 
specific context for each property matters. 
 
Hu et al.’s (2025) study covers 40 states with a comprehensive database for both agricultural and 
residential parcels and a thorough analysis that supersedes previous studies for the time being. 
For agricultural land, Hu et al. (2025) finds an average price increase of 19.4% for parcels within 
2 miles of large-scale solar installations, but this effect disappears beyond 2 miles. This price 
effect is also temporary, peaking 3 years after installation and dissipating within 6 years. They 
interpret these price patterns as the option value – agricultural and non-vacant lands can be added 
to the existing solar farm, but as one moves further away and as the installation matures, this 
option value declines.  
 
If a similar study were conducted for Wisconsin, we expect effects similar to the Hu et al. (2025) 
pattern, but to vary in magnitude and by location. Wisconsin has many areas devoted to 
specialized agricultural uses. Intensive dairy regions need land for manure, and crops like 
potatoes, vegetables, cranberries, and ginseng require special types of land. Loss of land to solar 
farms in these areas would likely have a larger impact on surrounding farmland values because 
alternative land to replace these losses is limited. However, the effect would likely be smaller in 
areas with more traditional agricultural land use for which substitute land is available nearby. Hu 
et al. (2025) also show that price increases are most evident for smaller parcels, because they can 
host incremental expansions of large-scale solar installations. By contrast, almost no price effect 
is observed for larger parcels. 
 
For residential land, Hu et al. (2025) find drops of 7.2% in value for parcels within half a mile of 
a large-scale solar farm and 4.8% for those within 3 miles, and no statistically significant effect 
beyond that distance. Prices for residential properties return to their baseline about 9 years after 
solar construction. We anticipate similar effects in Wisconsin, a 4%-7% decline in residential 
property values within half a mile of large-scale solar farms that disappears after about 9 years.  
 
Public perception plays an important role. Whether real or perceived, farmers and homeowners 
near solar farms are concerned about actual or potential effects on the value of their land and 
perceptions of potential buyers. In rural areas, opposition to solar farms is often explained by the 
perception that solar farms use rural resources for the benefit of urban areas – a phenomenon 
known as the “rural burden”. However, not all solar farms are the same. Smaller community-
scale solar farms are built to serve a community or a set subscriber base, while larger utility-scale 
solar farms are designed to provide electricity for cities or regions often further away. Since most 
research focuses on large-scale solar farms, it is unclear how results and perceptions would differ 
for community-scale solar farms. In the context of the “rural burden”, community-scale solar 
farms could plausibly be seen favorably in rural and agricultural areas, as a source of pride for 
energy independence. Hu et al. (2025) finds some evidence supporting this effect, but the topic 
remains largely unexplored empirically. Understanding these effects on property values in 
Wisconsin would require survey or focus group work that is outside the scope of this assessment.   
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Updated Impact of Proximity to Solar Farms on Property Values 
 
Context 
Renewable energy technologies, such as solar panels, wind turbines, and biofuel technologies 
have gained increased attention in recent years, but not all renewable energy technologies are the 
same. Solar is more controversial because installing a solar farm requires a fundamental land-use 
change compared to producing wind energy or biofuels (Geiger 2025; Maguire et al. 2024). 
Attention commonly focuses on potential impacts on nearby home and agricultural land values. 
For this brief report, we searched both the academic and non-academic research to summarize 
what others have found. We found several studies that examined impacts on home values and a 
few that analyzed the impacts of solar farms on agricultural land values. The comprehensive 
study of Hu et al. (2025) was just published and likely settles much of the academic debate for 
the time being, and so we have updated our April report to reflect this new research. This report 
summarizes the research and briefly discusses possible implications for Wisconsin. Finally, we 
discuss the importance of public perception for these effects on property values.  
 

Impacts on agricultural land prices 
Abashidze and Taylor (2023) examined agricultural land sales in North Carolina and found no 
direct effect of the distance from a solar farm on the sale price of agricultural land. They find 
some weak statistical evidence that agricultural land parcels nearer to transmission power lines 
may increase in value after a solar farm is built nearby. They propose that solar farm installation 
potentially creates a signal to solar farm developers of the suitability of adjacent agricultural land 
for future development as a solar farm.  
 

An unpublished master’s thesis (Kunwar 2024) analyzed the effect that the distance to a solar 
farm had on prices for farmland sales in Indiana. The study found that being one mile nearer to a 
solar farm increased the price of farmland by 1.4%. For higher value farmland (in the top 20%), 
the effect was larger, a 1.6% increase, and only 0.9% for lower value land (in the bottom 20%). 
The thesis did not discuss how far this effect extended before it dissipated. Also, the regression 
analysis explained only about 18% of the variation in land prices, indicating that farmland values 
are highly variable and many other factors besides those included in their analysis affect prices.  
 

Hu et al. (2025) find that the price of land within 2 miles of a solar farm increases 19.4% on 
average, with the effect becoming statistically insignificant beyond 2 miles. The increase appears 
three years after installation and fades roughly six years later, consistent with the hypothesis that 
these land value changes are driven by option value for possible future solar leases rather than a 
permanent change. Analysis shows that the price increases are concentrated on smaller parcels as 
they cost less to add to existing solar arrays. Large land parcels show no price response as they 
are more costly to add to an array, while parcels near mega-arrays also show no price response 
because the already large array is less likely to expand. 
 

Discussion of impacts on agricultural land prices 
Surprisingly little research exists on the effects of solar farms on farmland values. Abashidze and 
Taylor (2023) found no solid evidence of an impact in North Carolina. Kunwar’s (2024) 
preliminary results are consistent with expectations (solar farms increase nearby farmland 
values), but the impact seems small: an average change of 1.4% per mile, with a range of 0.9% to 
1.6%. The newly published Hu et al. (2025) study used an extensive multi-state database and 
comprehensive analytical methods, and so the research results summarized above supersede the 
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other analyses, which is why this report needed updating. In short, the value of farmland within 2 
miles of a large-scale solar farm increases 19.4% on average – but the effect disappears beyond 2 
miles, peaks about 3 years after solar farm installation, and fades roughly after 6 years. This 
pattern is consistent with an option value – land prices increase because the solar array may 
expand onto these nearby lands in the near future. This option value has a limited reach from the 
solar farm and eventually it fades as it becomes clear the solar farm will not expand further. 
Nonetheless, large scale installations have a sizable effect on farmland prices within a certain 
distance. The option value is highest for small parcels near smaller solar farms, because these 
parcels are lower cost to add to the array and smaller solar farms still have room to expand.  
 

To give some idea of what this effect could mean in the state, we apply Hu et al.’ (2025) 
estimates to 2024 land values in Wisconsin. The average value for agricultural land in Wisconsin 
in 2024 was $6,600/ac (USDA NASS 2025). Schlesser (2025) summarizes actual farmland sales 
data in Wisconsin in 2024. Her discussion and Figure 2 suggest that the lowest 20% had prices 
below about $3,000/ac and the top 20% had prices above about $9,500. Applying the 19.4% 
average effect to these land values gives $6,600 x 0.194 = $1280/acre price increase for average 
farmland, with a range of $3,000 x 0.194 = $582/acre to $9,500 x 0.194 = $1,843/acre. These 
gains are substantial compared to historical estimates but are spatially limited and temporary.  
 

These are average effects based on this new national evidence. We expect larger effects in parts 
of Wisconsin with high-value and unique agricultural land uses, particularly in areas with lots of 
dairy or specialty crop production. Areas with intensive dairy production need farmland for 
manure application, the Central Sands and Lower Wisconsin River Valley are used for intensive 
potato and vegetable production, and several areas of the state are used for important specialty 
crops like seed potatoes, cranberry and ginseng. Loss of land in these areas to solar farms would 
likely have a larger impact on surrounding farmland values than in the Hu et al. (2025) study 
because they are high-value uses and have limited availability of alternative land for replacement 
if lost. However, we note that this hypothesis has not been examined empirically.  
 

Impacts on home prices 
Hu et al. (2025) analyzed prices for 8.3 million individual home sales in forty US states and 
found that, on average, homes within a half-mile of a large-scale solar farm experienced a 7.2% 
reduction in value, homes within 3 miles experienced a 4.8% reduction in value, and homes 
beyond that distance had no statistically significant reduction in value. Elmallah et al. (2023) 
used data from six states (not including Wisconsin) and found smaller home price decreases 
(2.3% within a quarter-mile, 1.5% within a half-mile), but the pattern was the same. In Hu et al. 
(2025), home price decreases were larger in the Northeastern U.S., in politically conservative 
counties (based on 2016 party voting shares), and for residential parcels on land that was 
previously agricultural, but negligible for solar farms that are brownfield redevelopments or 
located in left-leaning counties (based on 2016 party voting shares).  
 

Smaller, single-state studies show mixed or null effects. Specific to the Midwest, a real estate 
impact study in Illinois by McGarr and Lines (2018) compared sales of single-family homes 
adjacent to solar farms to sales of comparable homes not adjacent to solar farms. They found no 
consistent negative impact on home sales prices or other influential market indicators attributable 
to adjacency to solar farms. Hao and Michaud (2024) used aggregate data to examine the impact 
of 70 Midwest solar farms on average home values in the same zip code, finding a 0.5% to 2.0% 
increase in average home values in zip codes with a solar farm. They propose that solar farms 
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increase tax revenues that are used to build amenities such as better schools and public services, 
which then increase nearby home values. Specific to Wisconsin, the market analysis of MaRous 
and Company (2021) examined the potential impacts of a proposed solar farm in Dane County 
and found that the market data indicated that there would be no negative impact on rural 
residential property values. This study also found that data did not substantiate local landowners’ 
concerns about noise and visual impacts from an existing solar farm on land values. 
 

Taken together, the Hu et al. (2025) study confirms the expected disamenity effect on values for 
homes close to large-scale solar farms, while the findings of Elmallah et al. (2023) and single-
state studies show how local contexts might abate the penalty. The results are highly variable, 
suggesting that the specific context for each home matters. The fact that the smaller studies did 
not find an effect is not surprising. Home values are highly variable and identifying effects with 
highly variable data is statistically difficult with small samples. Hao and Michard (2024) admit 
their results are counter to what most research finds; we have developed an academic critique 
beyond the scope of this report that would explain their unusual results as a statistical issue.  
 

The role of public perception 
The evidence put forth in these studies is often mixed, with the high variability in land values 
and home prices indicating that the specific context of each sale matters. The implication is that 
public perception plays an important role in how the proximity to solar farms impacts residential 
home prices and farmland values. Whether real or perceived, land and homeowners adjacent to 
solar farms are concerned about potential buyers passing on their home and land because of its 
proximity to a solar farm (Breese, 2025a; Breese, 2025b). In rural areas specifically, there is 
opposition to solar farm development that is best explained by the perception of the development 
being extractive of rural natural resources (i.e., land) for the benefit of urban areas – a 
phenomenon known as the “rural burden” (Nilson and Stedman, 2023). Hu et al. (2025) show 
that visibility itself adds no extra penalty once distance is controlled, lending credibility to the 
notion that the price discount might not be driven by glare, noise, or other physical health 
concerns, but perception. Public perception can and will influence the acceptability of solar 
projects so that citing ordinances may want to take it into consideration. 
 

Not all solar farm projects are the same – notable differences exist between utility-scale and 
community-scale solar. Community-scale solar projects are usually smaller and established for a 
particular community or subscriber base, while utility-scale solar projects are larger and designed 
to provide a significant amount of electricity for cities or regions (Geiger, 2025). Most of the 
studies reviewed in this report were for utility-scale solar farms and it is not entirely clear how 
their results would differ for a community-scale solar farm. However, considering the root of the 
rural burden and the main concerns associated with solar farms such as change in land-use and 
visible disamenities, community-scale solar projects could plausibly be perceived more 
favorably in rural and agricultural areas. As a result, we believe that the distinction between 
community-scale and utility-scale solar projects is likely quite important in many contexts.  
 

Caveats 
We emphasize that extrapolation of some of these findings to Wisconsin is predicting out of 
sample, which can lead to serious errors. We found very few studies specific to Wisconsin and 
suggest that additional research to examine these effects in the unique Wisconsin context may be 
warranted to address this issue. Such work could include econometric analysis of home and land 
sales data, as well as surveys or focus groups to better understand public perceptions. 
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Abstract

Local opposition to utility-scale solar farms often stems from concerns about declin-
ing nearby home values. This paper quantifies the impact of solar farm construction
on residential property prices in North Carolina, one of the leading U.S. states for
utility-scale solar capacity. Using detailed housing transaction data and a hedonic
difference-in-differences framework, we estimate the causal effect of new solar farm
operations on neighboring home sale prices. We employ a refined measure of spatial
exposure—using street-network (road) distance rather than straight-line distance to
define proximity—to better capture actual visual exposure in treatment assignment.
Our results indicate that the arrival of a solar farm leads to an approximately 8.7%
reduction for homes within one mile relative to similar homes farther away. We also
find evidence that local housing market activity declines after a solar farm becomes op-
erational: the number of homes sold in the nearby area falls by roughly 6%, suggesting
reduced housing liquidity in the vicinity of the new solar facility.
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1 Introduction

Solar energy expansion in the United States is widely supported,1 yet utility-scale solar

projects frequently encounter resistance from local communities. Although solar farms con-

tribute to climate goals and rural economic development, nearby residents often worry that

these large ground-mounted installations could degrade scenic views, alter rural character of

their communities, and depress property values (Johnson, 2012; Cignoli, 2012). These con-

cerns have manifested in court cases and zoning hearings, where neighbors describe visible

solar arrays as an undesirable local disamenity.

Despite rapid growth in solar deployment, relatively few empirical studies have quantified

the local spillover effects of utility-scale solar on residential real estate. The existing evidence

is mixed and contradictory. For example, Gaur and Lang (2023), using repeat-sales data

in Massachusetts and Rhode Island, find modest home value declines of roughly 1.5–3.6%

within 0.6 miles of new solar farms. In contrast, Hao and Michaud (2024) document small

positive effects (0.5–2.0%) in parts of the Midwest, where solar facilities may be less visible

or better integrated with local land use. Maddison et al. (2022), in a study of England and

Wales, find that homes located within 750 meters of large (>5 MW) solar farms experienced

price declines of approximately 5.4%. Guignet and Hellerstein (2023), using a nationwide

hedonic framework, find no consistent solar-specific effect after accounting for neighborhood

and locational features.2,3

This paper contributes new evidence to the emerging literature by estimating the causal

effect of solar farm development on nearby residential property values in North Carolina,

1Kennedy (2016), “Americans strongly favor expanding solar power to help address costs and environ-
mental concerns,” Pew Research Center: http://pewrsr.ch/2dK9KKQ.

2Abashidze and Taylor (2023) examine the effect of utility-scale solar systems on nearby agricultural land
values in North Carolina. They find no direct positive or negative spillover effects but suggest that solar
farm construction may indirectly influence land values by signaling the land’s suitability for future solar
development, particularly in proximity to electric transmission lines.

3By contrast, a robust body of research has shown that rooftop solar installations tend to increase
home values. Households with installed photovoltaic (PV) systems often receive price premiums upon sale,
reflecting both energy savings and buyer preferences for environmentally friendly features. See, for example,
Qiu et al. (2017); Hoen et al. (2017); Dastrup et al. (2012); Adomatis and Hoen (2016); and Wee (2016).
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one of the leading U.S. states for utility-scale solar capacity. Using a difference-in-differences

framework and detailed transaction data from Zillow Research (2017),4 we compare price

effects for homes located near solar farms to those slightly farther away, before and after

each project becomes operational. We build on recent literature by using street-network

(rather than straight-line) distance to define exposure. This approach may better capture

how residents actually experience the visual externality of solar farms, particularly in settings

where visibility is shaped by local siting ordinances. For example, solar ordinances in North

Carolina often mandate vegetative buffers between farms and homes, but not along public

roads (Lovelady, 2014). This implies that road-facing exposure may be the primary channel

through which residents encounter the disamenity, especially during daily commutes.

We find that homes located within one mile of a new solar farm experience sale price de-

clines of approximately 8–12%, with the largest effects concentrated within 0.5 miles. These

statistically and economically significant effects are robust across specifications. The esti-

mated effects are substantially larger than those reported in a multi-state study by Lawrence

Berkeley National Laboratory (Laboratory, 2023), which found an average 1.5% price reduc-

tion within 0.5 miles of solar farms and significant effects in only a subset of states, including

North Carolina. A likely explanation is that the LBNL analysis relies on broad distance

bands and Euclidean proximity, which may attenuate localized variation. By contrast, our

approach leverages high-resolution street-network distance and parcel-level data to capture

exposure more precisely. In addition to price effects, we also document a roughly 6% drop

in home sales volume following solar farm construction, which may reflect reduced housing

demand or market activity in affected neighborhoods. Finally, we explore heterogeneity in

treatment effects based on prior land cover and find no statistically significant differences

between sites converted from forest versus grassland.

Together, these results contribute to a growing body of evidence on the localized impacts

4Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More in-
formation on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are
those of the author(s) and do not reflect the position of Zillow Group.
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of renewable energy infrastructure. In particular, this study adds to the literature by (1)

introducing a network-based exposure measure grounded in road accessibility; (2) using

highly detailed spatial and temporal data on both home sales and solar installations in a

high-growth solar market; (3) providing evidence from the Southeastern U.S., a region largely

absent from prior research; and (4) examining outcomes beyond price - specifically, the

effect on transaction frequency. These findings offer new insight into how solar development

reshapes local housing markets and can inform land-use policy, community planning, and

solar siting strategies.

The remainder of the paper is organized as follows. Section 2 describes the data, in-

cluding the novel road-distance exposure metric. Section 3 outlines the empirical strategy

and identification assumptions. Section 4 presents the baseline results and robustness checks

(e.g., alternative distance measures, sample windows, and farm characteristics). Section 5

concludes with a discussion of policy implications.

2 Data

To conduct our analysis, we integrate two primary datasets—residential property trans-

actions from Zillow’s ZTRAX database and detailed solar farm location data from the North

Carolina Clean Energy Technology Center. Below, we describe each data source, the proce-

dures used to link them spatially, and our sample selection criteria.

2.1 Housing Transactions

Our primary housing market data come from Zillow’s Transaction and Assessment

Dataset (ZTRAX)5, which provides comprehensive geocoded records of single-family home

sales across the United States. For our analysis, we extract all arms-length transactions

5Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More in-
formation on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are
those of the author(s) and do not reflect the position of Zillow Group.
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recorded in North Carolina from 1997 through 2017 and restrict the sample to sales that

include a consistent set of property characteristics (e.g., lot size, living area, number of

bedrooms, and bathrooms) and have non-missing geographic coordinates for the property

address. Transactions with prices below $20,000 or above the 99th percentile of the price

distribution are excluded from the analysis (Haninger et al., 2017; Taylor et al., 2016), as

these prices likely do not represent market values. Short-term resales (sales occurring within

two years of a previous sale) are also removed from the analysis, as these may reflect specu-

lative behavior or atypical market conditions rather than stable valuations (Haninger et al.,

2017).

To capture local socioeconomic context, demographic information from the American

Community Survey (ACS) is integrated into the analysis. Specifically, each home sale is

linked to block-group-level demographics, including median household income, racial and

ethnic composition, and educational attainment levels. These variables serve as essential

neighborhood controls in the subsequent analyses.

2.2 Solar Farms

Information on solar farm locations is sourced from the North Carolina Clean En-

ergy Technology Center, which maintains a comprehensive inventory of solar installations

statewide. Each project record includes location coordinates, generation capacity, and con-

firmed operational start dates through 2017.

To precisely delineate the spatial boundaries of these solar installations, we manually

digitize panel footprints using high-resolution satellite imagery Google Earth and Google

Maps. This digitization ensures accurate exposure measurement by capturing actual physical

extents rather than relying on approximations such as parcel centroids. Our final dataset

includes verified spatial polygons for 428 utility-scale solar farms, representing the near-

universe of large-scale solar development in North Carolina over the study period.

To further characterize solar installations, we overlay each digitized polygon onto the

4
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2006 National Land Cover Database (NLCD). This allows us to classify the pre-solar land

cover of each installation site, focusing primarily on whether the land was previously forest or

grassland. These distinctions enable heterogeneity analyses that test whether property-value

impacts vary based on the original landscape type converted to solar use.

2.3 Sample Construction

To focus on localized housing market effects, we restrict the sample to homes located

within two Euclidean miles of at least one solar farm. This initial spatial boundary is

consistent with prior studies assessing the localized effects of environmental disamenities

and energy infrastructure (e.g., Gaur and Lang (2023); Haninger et al. (2017); Hoen et al.

(2015); Currie et al. (2015), which find that housing price effects tend to dissipate beyond

this range. Limiting the analysis to homes in close proximity ensures that the control group

is drawn from the same general neighborhood context as the treated homes, minimizing

confounding differences in broader housing market conditions. To ensure the estimated

effects are not influenced by the presence of multiple nearby facilities, we restrict the sample

to homes located within two miles of only one solar farm.

In addition to structural characteristics from ZTRAX and neighborhood demographics

from ACS, we include several locational controls to account for spatial amenities and dis-

amenities that could independently influence property values. These include distances to

major roads, bodies of water, and public open spaces, which we calculate using GIS-based

overlays with state geographic data layers.

Table 1 provides descriptive statistics for our final sample of 15,939 home transactions

across 249 distinct solar farm areas, highlighting the typical housing characteristics and

contextual attributes of the analyzed homes. The average home in the sample is 32 years

old and is sold for $153,000 (inflation-adjusted to 2017 dollars) with about 3 bedrooms and

2 bathrooms, and the mean living area is 1,670 square feet on a lot of 0.9 acres. The nearby

solar farms vary widely in scale, from small 1 MW projects to large installations of 80 MW

5
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capacity, with an average capacity of about 5–6 MW. Given typical land use intensity for

utility-scale solar, a project with 5–6 megawatts of capacity generally occupies between 25

and 30 acres. Most of these installations (≈ 60%) are built on previously agricultural open

space, while the remainder are sited on forested land.

3 Empirical Strategy

The non-experimental nature of our data presents challenges in identifying the causal

effect of solar farm construction on residential property values. In particular, solar farms are

not randomly sited across space: their locations may reflect unobserved local characteristics,

such as land suitability, zoning, or development potential, that also influence nearby home

prices. For example, if solar farms tend to be built in less affluent or more rural areas where

property values are already lower, a näıve comparison of house prices near versus far from

solar farms may overstate the disamenity effect. This is because underlying spatial and

economic conditions, not the solar farm itself, could drive observed price differences.

To address these identification concerns and mitigate bias from unobserved heterogeneity,

we adopt a difference-in-differences (DiD) research design with rich fixed effects. Specifically,

we include solar farm fixed effects to control for all time-invariant factors specific to the area

surrounding each installation, such as baseline amenity levels, land quality, or proximity

to infrastructure. We also incorporate county-by-year fixed effects to capture local housing

market trends and policy shocks that vary across time and geography. These controls allow

us to isolate the change in house prices associated with the solar farm construction from

broader trends or persistent spatial differences.

Our identification strategy compares housing price trends before and after a solar farm

becomes operational for homes located in close proximity to the facility relative to homes

located slightly farther away within the same local area. This strategy relies on a parallel

trends assumption: that is, in the absence of solar farm development, treated and control

6
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homes would have followed similar price trajectories. Formally, we estimate variations of the

following hedonic DiD regression model:

ln(Pitcs) = β0+β1Treatics+β2Postitcs+β3(Treatics×Postitcs)+Xitcθ+Zitcφ+µs+λtc+εitcs (1)

where ln(Pitcs) is the natural log of the sale price of house i, sold in year t, located in

county c, and whose nearest solar farm is s. The indicator Treatics equals one if house i

is located near solar farm s (regardless of whether the project is yet to be built), and itcs

equals one if the sale occurred after the farm became operational. The coefficient of interest,

β3, captures the difference-in-differences estimate: the change in log sale price for homes

near a solar farm after construction, relative to price changes for homes farther away during

the same period. A negative β3 implies that the solar farm’s introduction reduced nearby

property values, beyond broader market trends captured by the control group.

The vectors Xitc and Zitc control for housing characteristics and neighborhood demo-

graphics, respectively. We include solar farm fixed effects, µs, to account for all time-invariant

differences across project sites. County-by-year fixed effects, λtc, control for local housing

market shocks or policy shifts that vary across counties and time, ensuring treated and con-

trol homes are compared under common regional trends. We cluster standard errors at the

solar farm level to account for spatial correlation in the error term among homes linked

to the same installation. We also explore alternative fixed-effects structures to assess the

sensitivity of the results to the specification of temporal controls.

3.1 Defining Treatment and Control Groups

In line with prior disamenity studies (e.g., Linden and Rockoff (2008); Muehlenbachs

et al. (2015)), we define treatment and control areas based on proximity to the solar farm.

Homes within a certain distance of a solar installation are considered “treated” (exposed to

the solar farm’s externalities), while homes farther away serve as the control group. Because
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the appropriate distance cutoff is not known a priori, we determine it empirically rather than

assume an arbitrary radius. Following the approach of Haninger et al. (2017), we first regress

the (log) sale price on housing attributes, solar farm fixed effects, and county-by-year fixed

effects to obtain price residuals purged of observable factors. We then use a nonparametric

local linear regression to examine how these residuals differ before vs. after the solar farm’s

construction as a function of distance from the farm (Cameron and Trivedi, 2005; Haninger

et al., 2017)6. The intuition is that if the solar farm impacts property values up to a certain

distance, we should observe a divergence between pre- and post-construction price residuals

for homes nearer than that threshold, but no difference for homes farther away.

The local polynomial analysis indicates that any divergence in pre- versus post-treatment

housing prices disappears beyond roughly one mile from the solar farm (Figure 1). In other

words, solar farm construction has no statistically discernible effect on home values beyond

approximately one mile. Based on this evidence, we define the treatment group as homes

located within one mile of the nearest solar farm, and the control group as homes located

beyond one mile. It is important to note that distance is measured along the street network

(i.e., driving distance on roads) rather than straight-line Euclidean distance. This choice is

motivated by the nature of visual externalities: solar farms are typically buffered from direct

view of adjacent properties by vegetation (as encouraged by local ordinances – see Lovelady

(2014)), but they remain visible to observers traveling along nearby roads. A network-

distance measure thus may better capture actual exposure to the installation (Taylor, 2017).

As a robustness check, we also implement a “donut” specification that excludes transactions

occurring in the 1.0–1.5 mile range, ensuring that our results are not sensitive to including

homes near the cutoff threshold. Table 2 summarizes the number of home sales by treatment

status and time period.

6A local linear polynomial estimator minimizes the locally weighted sum of squared residuals. We use the
Gaussian kernel for weighting and Silverman’s rule of thumb (Silverman, 2018) to determine the bandwidth.
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3.2 Identification Assumptions and Validity

The DiD strategy relies on the parallel trends assumption. That is, in the absence of

treatment, housing prices in the treatment group would have followed the same trajectory as

those in the control group. This identification assumption requires that, after controlling for

observable differences, any change in the price gap between treated and control homes can be

attributed to the introduction of the solar farm. Figure 2 provides a graphical check of this

assumption by plotting the house price residual trends for treatment and control groups over

time (with time measured relative to the solar farm’s operation start date). The two groups

exhibit statistically indistinguishable price trends in the pre-construction period, consistent

with parallel trajectories prior to treatment. After the solar farm becomes operational,

however, the trends diverge: there is no change in the price residuals for control homes, but

the treated homes experience a pronounced downward shift. This post-treatment divergence

is significant for roughly the first three years after the solar farm’s opening (diminishing by

the fourth year, as fewer treated homes are sold by that time).

We further assess identification validity using an event-study approach, which relaxes

the constant treatment effect assumption. Specifically, we re-estimate the model allowing

the treatment–control price differential to vary with each year relative to the solar farm’s

introduction (including solar-farm-by-year fixed effects to absorb common shocks). The re-

sulting coefficients (plotted in Figure 3 with 90% confidence intervals) reinforce the evidence

that treated and control homes followed similar trends prior to solar farm construction. In

contrast, beginning in the first year after the solar farm becomes operational, a clear negative

impact on treated home prices emerges and persists in subsequent years. There is a slight

dip in the relative price of treated homes about one year before the opening (event time

-1), which could indicate anticipation effects or disruptions during the construction period.

These patterns are evidence that pre-treatment trends were parallel. This evidence further

supports the validity of the research design’s identification assumption.

9
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4 Results

4.1 Baseline Results

Table 3 presents the baseline DiD estimates of equation 1 for the effect of solar farm

construction on nearby house prices. In all specifications, the treated group is defined as

homes within one mile by road of a solar farm and the control group as homes beyond one

mile from that same site. Standard errors are clustered at the solar-farm level to allow for

spatial correlation among observations tied to the same site, and the results are robust to

alternative clustering at the county level as well (results not reported). In support of the

parallel trend assumption, the pre-treatment differences between the groups are negligible.

The coefficient on the Treat dummy (which captures any baseline price gap between homes

that will be treated compared to controls) is small and not significantly different from zero

in most specifications.

Our preferred specification (column (12) of Table 3) includes both solar-farm fixed effects

and county-by-year fixed effects, along with the full set of housing and neighborhood char-

acteristics. The coefficient on the interaction term Treat × Post is negative and statistically

significant, indicating a substantial decline in home values for properties near the solar farm

after it becomes operational. In our preferred model, the point estimate implies that the

opening of a solar farm leads to approximately an 8–9% reduction in sale price for homes

within one mile, relative to comparable homes in the control group.

We explore the price effect at varying proximity thresholds as well. Notably, the price

impacts are highly localized: homes immediately adjacent to the solar farm experience the

largest drop in value. For example, when we restrict the treatment group to houses within

0.5 miles of the solar installation (and exclude those 0.5–1 mile away), the estimated effect is

around 12-14% (Table 3, columns 1 - 4). This suggests a distance gradient, where properties

closest to the solar farm suffer the greatest capitalized losses, while those a bit farther out

(between half a mile and one mile) see a smaller impact. Beyond one mile, we detect no
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price changes attributable to the solar farm, consistent with our earlier distance analysis.

Table 4 reports results for a “donut” approach, where houses located between 1 and 1.5

miles from solar farms are excluded from the control group to mitigate potential spillover

effects at intermediate distances. Relative to the baseline estimates reported in Table 3,

the “donut” method produces treatment effects that are larger in absolute magnitude and

statistically significant.

We also examine whether solar farm development may be capitalized into home prices

prior to project completion. That is, if nearby residents anticipate the disamenity, price

effects might emerge before the farm becomes operational. To test this, we estimate equa-

tion 1, which introduces a construction-period dummy for homes sold shortly before the solar

farm’s opening. While we lack data on the precise start of construction, we follow (Kikuma

et al., 2018) and assume either a one- or two-year lead time. Columns (1)–(4) of Table 5

define the construction period as one year before operation; columns (5)–(8) extend it to two

years.

Results show that sales prices in the treatment group are slightly lower than in the

control group during the year preceding solar farm operation, but these differences are not

statistically significant. When extending the lead to two years, point estimates remain small

and imprecise. Across both specifications, the coefficient on the construction-period dummy

is near zero and insignificant. Overall, we find no consistent evidence of pre-construction

price effects, suggesting that home values in treated and control areas were comparable in

the one to two years prior to solar farm operation. Importantly, the main post-treatment

effect (Post × Treat) remains stable in both magnitude and significance, confirming that our

baseline results are not confounded by anticipatory price adjustments.

4.2 Robustness Checks

We conduct a series of additional analyses to ensure that our findings are not driven by

specific modeling choices or data limitations. In each case, the results continue to support
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the conclusion that solar farms have a localized negative impact on home prices. Below we

summarize key robustness checks.

Alternative Distance Metric: We re-estimate the model using Euclidean (straight-line)

distance to define proximity. Across all specifications, this yields small, inconsistent, and

statistically insignificant estimates (Appendix Table A1). This supports the use of street-

network distance as a more accurate proxy for exposure, as it better captures visual access,

such as from roads. Homes located within 0.5 miles “as the crow flies” but shielded by

trees or lacking road access show no price response, while homes within 1 mile by road

exhibit significant value declines. This suggests that visual exposure, not simple geographic

proximity, drives the observed effect.

Housing Supply Adjustment: A potential concern is that the housing market may respond

on the supply side to solar farm construction. For example, if homeowners delay sales or

developers reduce nearby building activity, prices could be affected over time. To address

this, we restrict the sample to narrower post-treatment windows. One test includes only

sales within one year of solar farm opening; others limit the window to two or three years.

Since housing supply is relatively inelastic in the short run, these tests help isolate demand-

side effects before supply adjustments take hold. Across all windows (Table 6), we continue

to observe negative treatment effects of 7–11%, though significance declines in the one-year

sample due to limited observations. Importantly, point estimates remain consistent with the

baseline, suggesting our results are not driven by supply-side shifts.

Extended Control Radius: Our baseline sample includes home sales within a two-mile Eu-

clidean radius of each solar farm. As a robustness check, I expand this radius to three miles,

enlarging the pool of potential control observations by including homes located between two

and three miles away. The treated group remains defined using a one-mile network distance.

Results (reported in Appendix Table A2) remain qualitatively unchanged: the coefficient on

Post × Treat is negative and statistically significant, with a magnitude very close to that

of the two-mile sample estimate. This finding suggests that including more distant control
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observations (unlikely to be affected by the solar farms) does not dilute the estimated ef-

fect, reinforcing the interpretation of a localized impact. Additionally, it implies that minor

differences in neighborhood context between the 1–2 mile and 2–3 mile rings are already

captured by the fixed effects.

4.3 Heterogeneity Analysis

We next explore whether the impact of solar farms on property values varies with certain

observable factors related to the solar installations or their surroundings. In particular, we

examine three dimensions of potential heterogeneity:

Solar Farm Size: We test whether the effect differs for larger vs. smaller solar farms.

Many of the installations in our sample are modest in size (≤5 MW capacity), and there

are relatively few home sales near the handful of larger projects (>5 MW). To investigate

whether larger solar farms drive the primary results, we re-estimate the model after ex-

cluding observations associated with these larger facilities. The estimated treatment effect

remains unchanged, suggesting that the main findings are primarily driven by numerous

smaller-scale solar farms (column 1 of Table 7). Consequently, we find no evidence of sys-

tematically different impacts arising from the few larger installations. However, given the

limited number of observations around larger projects, caution is warranted when drawing

definitive conclusions regarding size-specific effects.

Local Electricity Buyer: We consider whether community attitudes or perceived benefits

might differ based on who purchases the power generated by the solar farm. In North Car-

olina, some solar farms sell electricity to investor-owned utilities (e.g., Duke Energy), while

others contract with local electric cooperatives or municipal utilities. One might hypothesize

that if a solar farm’s power is sold locally (to a co-op/municipal utility), nearby residents

could view the project more favorably, perhaps due to targeted outreach by the co-op or

an expectation of local energy benefits, compared to a scenario where power is sold to a

large external utility. To test this, we create an indicator for solar farms with local utility
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off-takers (co-ops or municipals) and interact it with the treatment variables. The regression

results (Table 7, column 2) show no meaningful difference in the price effect: the coefficient

on the triple interaction (Treat × Post × LocalUtility) is near zero and insignificant. The

main Treat × Post effect in these models remains negative and significant, and its magnitude

is only slightly smaller than in the baseline. In sum, whether the solar farm’s electricity is

sold to a local co-op/municipality or to a large utility does not appear to change the effect

on nearby home prices.

Prior Land Use (Visual Buffering): We investigate whether the land cover of the solar

farm site before development influences the magnitude of the externality. Converting a

forested plot into a solar farm could have a different visual/scenic impact than converting an

open field, for example. On one hand, replacing a forest with rows of solar panels might be

more jarring (homes lose a wooded view they once had), potentially leading to larger price

drops. On the other hand, a former forest site might retain surrounding trees as natural

buffers, whereas a farm built on open grassland relies on newly planted vegetative screens

that might be less effective initially. To test for differential effects, we classify each solar

site based on its pre-construction land cover: forest vs. grassland/agricultural. We then

interact these indicators with the treatment effect. The results (Table 7, column 3) reveal

no statistically significant heterogeneity by land cover. The estimated solar farm effect is

slightly larger in magnitude for the forested sites, but the difference is not significant, the

interaction terms for Post × Treat × Forest and Post × Treat × Grassland both have

confidence intervals that include the baseline effect. We conclude that, at least on average,

the negative effect on home prices does not depend strongly on whether a solar farm is built

on former forest versus open land. Any visual differences created by these land conversions

do not translate into a discernible difference in home value responses.

We also explore other potential dimensions of heterogeneity. For example, comparing

effects between more densely populated and very rural areas, or examining differences across

housing value tiers. These exploratory analyses did not reveal clear patterns, partly due to

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5280613

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



limited statistical power when partitioning the sample. We stratify solar farms by community

characteristics within two Euclidean miles, including education level, racial composition, eth-

nicity, and average income. Estimates reveal that the treatment effect is fairly homogeneous

across these different community profiles (Appendix Table A3).

4.4 Additional Outcomes: Housing Market Activity

Beyond price effects, we examine whether solar farm openings have any impact on the

liquidity of the nearby housing market, specifically whether homes transact less frequently

once a solar farm is in operation. A reduction in sales volume could occur if homeowners are

reluctant to sell (or buyers are hesitant to purchase) due to the disamenity, resulting in fewer

transactions in the treated area post-treatment. To investigate this, we follow an approach

similar to Currie et al. (2015) and analyze annual home sales counts in treated vs. control

areas. Specifically, we aggregate the number of single-family home sales in each year, for the

treated area and the control area, for each solar farm. We then re-estimate our DiD model

with the log of sales count as the dependent variable.

The results, reported in Table 8, indicate a decline in housing sales activity near the solar

farms. In our preferred specification with site and county-by-year fixed effects, the Treat ×

Post coefficient corresponds to about a 6% decline in the number of homes sold within one

mile, relative to the control group, following the solar farm’s construction. In other words,

the volume of transactions in the immediate vicinity drops significantly after the solar farm

comes online, compared to the trend in slightly more distant areas. This finding is consistent

across alternative specifications as well. The decline in sales volume suggests a reduction in

housing market liquidity near the solar farms.
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5 Conclusion

We provide new evidence that utility-scale solar farm development can significantly

depress nearby home values. Using a rigorous difference-in-differences design with high-

resolution housing sales data from North Carolina, we find that homes within roughly one

mile (by road) of a new solar installation sell for lower prices after the farm becomes op-

erational, relative to comparable homes slightly farther away. The estimated impact is

substantial: on the order of 8% to 12% price depreciation for properties in close proximity

(with the largest losses occurring within 0.5 miles). A back-of-the-envelope calculation illus-

trates the economic significance of these findings: the average home within one mile of a solar

farm experiences a property value reduction of approximately $11,900 following solar farm

construction. These effects are highly localized, as we detect no significant price changes

beyond about a one-mile distance after controlling for site fixed effects and neighborhood

trends.

Our results show larger local disamenity effects than most prior studies that rely on

straight-line distance measures. For example, a recent multi-state analysis by Lawrence

Berkeley National Lab (Laboratory, 2023) reported only a 1.5% average price reduction

within 0.5 miles of utility-scale solar sites. Likewise, previous U.K. research found modest

effects limited to large solar farms (> 5 MW) (Maddison et al., 2022), while we document

substantial price declines even around smaller installations. This contrast highlights the

importance of accurately measuring proximity using road-network distance and demonstrates

the sensitivity of impacts to local development context.

From a policy perspective, our findings indicate that renewable energy infrastructure

entails meaningful local costs. Homeowners near solar farms experience reduced property

equity, which may lead to community resistance. Mitigation or compensation strategies, such

as targeted property tax abatements, direct payments, or community benefit agreements,

could help address these localized economic impacts. Additionally, enhancing visual buffers

or setbacks could alleviate aesthetic concerns, potentially reducing negative price effects.
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Our analysis captures the net property value effect of converting land into solar installa-

tions but cannot fully separate the visual impact of solar panels from losses associated with

the previous land use, such as open farmland or forest. Future studies should investigate

whether these effects persist, fade, or intensify over longer periods as communities adapt. Ex-

amining outcomes across different regional or regulatory contexts, such as varying zoning or

community engagement standards, could further identify factors influencing property value

impacts. Overall, while utility-scale solar farms offer significant societal benefits, recognizing

and addressing their localized costs will help policymakers ensure an optimal clean-energy

transition.
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Table 1: The summary statistics of the variables used in the analysis.

Mean SD Min Max

Structural Characteristics
real price (2017 dollars) 153,118 85,085 20,000 510,721
lot size (acres) 0.9 1.6 0.01 19.9
living area (sq ft) 1,670 638 432 7,692
age at time of sale 32 27 1 161
bedrooms 3 1 1 9
bathrooms 2 1 1 6
Location Characteristics
Euclidean distance to solar farm (miles) 1.34 0.46 0.014 2.00
street network distance to solar farm (miles) 2.45 1.08 0.019 8.85
capacity of nearest solar farm 4.4 4.1 1 80
distance to nearest river (miles) 0.27 0.18 0 1.30
distance to nearest lake (miles) 1.30 1.13 0 9.39
distance to nearest open space (miles) 9.62 5.71 0 35.26
distance to nearest major road (miles) 0.64 0.65 0 6.33
Demographics
White (%) 66.9 23.1 0 100.0
Hispanic (%) 9.6 11.0 0 69.1
Bachelor’s degree (%) 15.9 9.7 0 55.2
Average Income ($) 57,951 17,530 16,544 187,967

Note: The number of sales for the full dataset is 15,939. Zero distance means that the
house is adjacent to river, lake, open space, and/or major road. Note, several houses are
located in census block groups with zero white and/or Hispanic population. Furthermore,
in some block groups no individuals have bachelor or higher education.
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Table 2: Transaction counts for house sales analysis by distance and time period.

Euclidean Distance Street Network Distance
Treatment Status Pre Post Pre Post

Treated (≤ 1mile) 2,532 1,186 703 259
Controls (>1 mile) 8,594 3,627 10,423 4,554
Total 11,126 4,813 11,126 4,813

Note: Controls (> 1 mile) include house sales located between one and two Euclidean miles
or between 1 and 8.85 miles by street network.
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Table 3: The effect of solar farm construction on house values.

Treated (≤ 0.5miles) Treated ((0.5; 1 ] miles) Treated (≤ 1mile)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treat 0.020 0.066* 0.044 0.061* -0.007 0.000 0.018 -0.011 -0.002 0.016 0.023 0.006
(0.042) (0.035) (0.035) (0.034) (0.033) (0.035) (0.035) (0.037) (0.026) (0.028) (0.027) (0.029)

Post 0.118** 0.074 0.074* 0.043** 0.120** 0.077* 0.075* 0.043** 0.120** 0.078* 0.076* 0.049**
(0.055) (0.046) (0.043) (0.022) (0.055) (0.046) (0.043) (0.021) (0.055) (0.046) (0.043) (0.021)

Post X Treat -0.110 -0.147** -0.123* -0.125* -0.150*** -0.120** -0.137*** -0.084* -0.135*** -0.122*** -0.127*** -0.087**
(0.069) (0.074) (0.072) (0.075) (0.053) (0.049) (0.051) (0.049) (0.044) (0.043) (0.044) (0.042)

Adjusted R2 0.578 0.630 0.612 0.651 0.580 0.630 0.613 0.651 0.581 0.630 0.614 0.651
Observations 15,264 15,264 15,264 15,264 15,666 15,666 15,666 15,666 15,939 15,939 15,939 15,939
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Solar Farm characteristics Yes Yes Yes
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes
County fixed effects Yes Yes Yes
County by Year fixed effects Yes Yes Yes
F-testb 0.01 0.93 0.45 1.22 0.22 0.53 1.17 0.66 0.07 0.68 1.08 0.84
(P-test) 0.92 0.34 0.50 0.27 0.64 0.47 0.28 0.42 0.79 0.41 0.30 0.36

Note: The estimates are based on equation 1. The sample includes houses located within two-Euclidean miles from the nearest
solar farm. The treatment and control groups are defined based on street network measure. The dependent variable is the
natural log of sales price for houses sold between 1997 and 2017. The sample includes 249 solar farms built between 2009 and
2017. A control group includes houses located beyond one street network mile of the solar farm. All models include house,
neighborhood, and location characteristics. F-test for Post + Post x Treat = 0. Finally, robust standard errors clustered by
solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: “Donut” Approach: The effect of solar farm construction on house values.

Treated (≤ 0.5miles) Treated ((0.5; 1 ] miles) Treated (≤ 1miles)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treat 0.014 0.053 0.039 0.047 -0.015 -0.006 0.010 -0.024 -0.011 0.009 0.015 -0.007
(0.041) (0.033) (0.034) (0.032) (0.035) (0.037) (0.036) (0.039) (0.028) (0.030) (0.028) (0.030)

Post 0.122** 0.081* 0.083* 0.051** 0.124** 0.083* 0.083* 0.051** 0.124** 0.084* 0.083* 0.055**
(0.056) (0.048) (0.044) (0.023) (0.057) (0.048) (0.044) (0.022) (0.056) (0.048) (0.044) (0.022)

Post X Treat -0.132* -0.168** -0.141** -0.139* -0.156*** -0.122** -0.142*** -0.079 -0.140*** -0.124*** -0.131*** -0.081*
(0.069) (0.073) (0.071) (0.076) (0.055) (0.051) (0.053) (0.051) (0.046) (0.044) (0.046) (0.043)

Adjusted R2 0.576 0.629 0.609 0.651 0.579 0.629 0.610 0.651 0.580 0.629 0.611 0.652
Observations 13,687 13,687 13,687 13,687 14,072 14,072 14,072 14,072 14,345 14,345 14,345 14,345
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Solar Farm characteristics Yes Yes Yes
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes
County fixed effects Yes Yes Yes
County by Year fixed effects Yes Yes Yes
F-testb 0.02 1.28 0.67 1.37 0.26 0.39 1.01 0.29 0.09 0.53 0.88 0.35
(P-test) 0.90 0.26 0.41 0.24 0.61 0.53 0.32 0.59 0.77 0.47 0.35 0.55

Note: The sample includes houses located within two-Euclidean miles from the nearest solar farm. The treatment and control
groups are defined based on street network measure. The dependent variable is the natural log of sales price for houses sold
between 1997 and 2017. The sample includes 249 solar farms built between 2009 and 2017. A control group is defined based
on a “donut” approach. A control group includes houses located beyond 1.5 street network mile of the solar farm. All models
include house, neighborhood, and location characteristics. F-test for Post + Post x Treat = 0. Finally, robust standard errors
clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Construction Period: The effect of solar farm construction on house values.

Construction = 1 year before the solar farm
operation start date

Construction = 2 years before the solar farm
operation start date

(1) (2) (3) (4) (5) (6) (7) (8)

Treat (≤ 1mile) 0.001 0.027 0.032 0.015 -0.005 0.022 0.027 0.007
(0.027) (0.031) (0.030) (0.032) (0.030) (0.036) (0.034) (0.036)

Construction -0.028 -0.020 -0.030* 0.009 0.007 0.006 0.004 0.002
(0.017) (0.016) (0.015) (0.020) (0.016) (0.014) (0.015) (0.020)

Post 0.107* 0.065 0.059 0.052** 0.125** 0.082* 0.078* 0.050**
(0.058) (0.047) (0.043) (0.022) (0.061) (0.047) (0.043) (0.024)

Construction X Treat -0.020 -0.059 -0.048 -0.049 0.010 -0.020 -0.013 -0.003
(0.046) (0.050) (0.048) (0.051) (0.039) (0.044) (0.043) (0.045)

Post X Treat -0.138*** -0.133*** -0.136*** -0.096** -0.132*** -0.128*** -0.131*** -0.088*
(0.045) (0.045) (0.046) (0.044) (0.047) (0.048) (0.049) (0.047)

Adjusted R2 0.581 0.631 0.614 0.651 0.581 0.630 0.614 0.651
Observations 15,939 15,939 15,939 15,939 15,939 15,939 15,939 15,939
Year fixed effects Yes Yes Yes Yes Yes Yes
Solar Farm characteristics Yes Yes
Solar Farm fixed effects Yes Yes Yes Yes
County fixed effects Yes Yes
County by Year fixed effects Yes Yes

Note: Note: The estimates are based on equation 1. The sample includes houses located within two-Euclidean miles from the
nearest solar farm. The treatment and control groups are defined based on street network measure. The dependent variable is
the natural log of sales price for houses sold between 1997 and 2017. In columns (1) to (4), construction period equals one if a
house is sold one year prior to the solar farm operation start date, while in columns (5) to (8), construction period equals one is
a house is sold one or two years prior to solar farm operation start date. All models include house, neighborhood, and location
characteristics. F-test for Post + Post x Treat = 0. Finally, robust standard errors clustered by solar farm are in parentheses
where *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Robustness Check: Housing Supply Adjustment.

1 Year Post Construction 2 Years Post Construction 3 Years Post Construction
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treat (≤ 1mile) -0.015 0.009 0.012 0.006 -0.013 0.010 0.016 0.004 -0.008 0.013 0.020 0.006
(0.026) (0.029) (0.026) (0.029) (0.025) (0.028) (0.026) (0.029) (0.026) (0.028) (0.027) (0.029)

Post 0.056 0.051* 0.027 0.056** 0.070* 0.056* 0.037 0.048** 0.114** 0.087* 0.074* 0.063***
(0.035) (0.029) (0.026) (0.025) (0.039) (0.033) (0.029) (0.021) (0.054) (0.047) (0.044) (0.021)

Post X Treat -0.096 -0.108* -0.114* -0.079 -0.082* -0.094** -0.090* -0.074 -0.110*** -0.104** -0.109** -0.078*
(0.064) (0.064) (0.063) (0.065) (0.044) (0.047) (0.046) (0.045) (0.040) (0.041) (0.042) (0.041)

Adjusted R2 0.597 0.636 0.622 0.655 0.591 0.633 0.618 0.651 0.585 0.630 0.614 0.649
Observations 12,567 12,567 12,567 12,567 14,292 14,292 14,292 14,292 15,269 15,269 15,269 15,269
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Solar Farm characteristics Yes Yes Yes
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes
County fixed effects Yes Yes Yes
County by Year fixed effects Yes Yes Yes

Note: The estimates are based on equation 1. The sample includes houses located within two-Euclidean miles from the nearest
solar farm. The treatment and control groups are defined based on street network measure. The dependent variable is the
natural log of sales price for houses sold between 1997 and 2017. Columns (1) to (4), removes sales occurring one year post
solar farm construction. Columns (5) to (8) removes sales occurring two years post solar farm construction. Columns (9) to
(12) removes sales occurring three years post solar farm construction. All models include house, neighborhood, and location
characteristics. Finally, robust standard errors clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Heterogeneity Analysis

SF capacity ≤ 5 MW Electric Coops Forest and Grass Coverage
(1) (2) (3)

Treat (≤ 1 mile) 0.004 0.012 0.005
(0.029) (0.019) (0.029)

Post 0.047** 0.047** 0.049**
(0.023) (0.023) (0.021)

Post × Treat -0.081* -0.072* -0.086**
(0.042) (0.037) (0.042)

Treat × Coop -0.054
(0.056)

Post × Coop 0.028
(0.051)

Post × Treat × Coop -0.062
(0.085)

Treat × Forest -0.154
(0.094)

Post × Forest -0.029
(0.042)

Post × Treat × Forest 0.191
(0.230)

Treat × Grass -0.000
(0.067)

Post × Grass 0.012
(0.029)

Post × Treat × Grass 0.124
(0.087)

Adjusted R2 0.655 0.651 0.651
Observations 15,034 15,939 15,372

Note: The estimates are based on equation 1. The sample includes houses located within
two-Euclidean miles from the nearest solar farm. The treatment and control groups are
defined based on street network measure. The dependent variable is the natural log of sales
price for houses sold between 1997 and 2017. Column (1) drops sales around solar farms
larger than 5 MW capacity; Column (2) incorporates interaction terms between a binary
indicator Coop (that equals one if a house is located around solar farms that sell power to
either electric co-ops or municipality owned electric utilities) and post, treat, and post x treat
variables; Column (3) includes land characteristics of parcels before the construction of the
solar farm (forest and grassland indicators). All specifications include county-by-year fixed
effects and solar farm fixed effects. All models include house, neighborhood, and location
characteristics. Finally, robust standard errors clustered by solar farm are in parentheses
where *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Housing Market Activity: The effect of solar farm construction on sales counts

(1) (2) (3) (4)

Treat (≤ 1mile) -2.688*** -2.693*** -2.690*** -2.690***
(0.013) (0.015) (0.014) (0.014)

Post 0.001 -0.002 -0.000 -0.000
(0.002) (0.002) (0.002) (0.003)

Post X Treat -0.058*** -0.055*** -0.057*** -0.057***
(0.014) (0.015) (0.014) (0.014)

Adjusted R2 0.996 0.996 0.996 0.997
Observations 15,939 15,939 15,939 15,939
Year fixed effects Yes Yes Yes
Solar Farm characteristics Yes
Solar Farm fixed effects Yes Yes
County fixed effects Yes
County by Year fixed effects Yes

Note: The sample includes houses located within two-Euclidean miles from the nearest solar
farm. The treatment and control groups are defined based on street network measure. The
dependent variable is the natural log of sales count aggregated by solar farm by year of sale
by treatment status. All models include house, neighborhood, and location characteristics.
Finally, robust standard errors clustered by solar farm are in parentheses where *** p<0.01,
** p<0.05, * p<0.1.
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Figure 1. Price function estimates pre- and post- solar farm construction

Note: The sample includes houses located within two-Euclidean miles from the nearest solar
farm. The figure is restricted to sales within 2.5 miles of the solar farm based on street
network distance measure. The figure includes 90 percent confidence intervals.
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Figure 2. Price function estimates relative to solar farm construction date

Note: The sample includes houses located within two-Euclidean miles from the nearest solar
farm. Treatment and control groups are defined based on street network distance measure.
The figure includes 90 percent confidence intervals.
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Figure 3. Event study: the effect of solar farm construction on housing values

Note: The sample includes houses located within two-Euclidean miles from the nearest
solar farm. Treatment and control groups are defined based on the street network distance
measure. The point estimates for the average treatment effect are provided along with 90
percent confidence intervals.
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Appendix
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Table A1: Euclidean Distance: The effect of solar farm construction on house values.

Treated ( 0.5 miles) Treated ((0.5; 1 ] miles) Treated ( 1 miles)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treat 0.002 0.015 0.013 0.005 -0.026 -0.028 -0.030 -0.026 -0.017 -0.020 -0.019 -0.019
(0.025) (0.022) (0.021) (0.022) (0.029) (0.023) (0.024) (0.024) (0.024) (0.020) (0.020) (0.020)

Post 0.116** 0.073 0.079* 0.041* 0.114** 0.068 0.073* 0.031 0.121** 0.067 0.074* 0.043
(0.053) (0.045) (0.042) (0.021) (0.054) (0.048) (0.044) (0.021) (0.055) (0.046) (0.043) (0.026)

Post X Treat -0.037 -0.042 -0.033 -0.022 0.013 0.017 0.017 0.015 -0.004 0.001 0.002 0.007
(0.032) (0.030) (0.032) (0.030) (0.029) (0.028) (0.028) (0.026) (0.024) (0.023) (0.024) (0.023)

Adjusted R2 0.592 0.641 0.622 0.661 0.579 0.630 0.613 0.651 0.580 0.630 0.613 0.634
Number of observations 13,344 13,344 13,344 13,344 14,816 14,816 14,816 14,816 15,939 15,939 15,939 15,939
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Solar Farm characteristics Yes Yes Yes
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes
County fixed effects Yes Yes Yes
County by Year fixed effects Yes Yes Yes

Note: The sample includes houses located within two-Euclidean miles from the nearest solar farm. The treatment and control
groups are defined based on Euclidean distance measure. The dependent variable is the natural log of sales price for houses
sold between 1997 and 2017. The sample includes 249 solar farms built between 2009 and 2017. A control group includes sales
located beyond one-Euclidean mile of the solar farm. All models include house, neighborhood, and location characteristics.
Finally, robust standard errors clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.1.
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Table A2: The effect of solar farm construction on house values (three-Euclidean miles).

Treated (≤ 1miles)
(1) (2) (3) (4)

Treat -0.028 0.000 0.002 -0.012
(0.029) (0.029) (0.027) (0.031)

Post 0.082 0.038 0.043 0.008
(0.054) (0.034) (0.032) (0.015)

Post X Treat -0.110** -0.097** -0.115*** -0.064
(0.047) (0.044) (0.044) (0.043)

Adjusted R2 0.581 0.623 0.613 0.637
Observations 32,413 32,413 32,413 32,413
Year fixed effects Yes Yes Yes
Solar Farm characteristics Yes
Solar Farm fixed effects Yes Yes
County fixed effects Yes
County by Year fixed effects Yes

Note: The sample includes houses located within three-Euclidean miles from the nearest
solar farm. The treatment and control groups are defined based on street network measure.
A control group includes houses located beyond 1 mile of the solar farm. The dependent
variable is the natural log of sales price for houses sold between 1997 and 2017. All models
include house, neighborhood, and location characteristics. Finally, robust standard errors
clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: Heterogeneity analysis by demographics.

Education Race (white) Race (Hispanic) Income
(1) (2) (3) (4)

Post X Treat (≤ 1mile) -0.061 -0.074 -0.060 -0.060
(0.057) (0.056) (0.070) (0.057)

Post X Treat X (Above Median) -0.072 -0.028 -0.045 -0.065
(0.080) (0.082) (0.086) (0.080)

Adjusted R2 0.651 0.651 0.651 0.651
Observations 15,939 15,939 15,939 15,939

Note: The sample includes houses located within three-Euclidean miles from the nearest
solar farm. The treatment and control groups are defined based on street network measure.
A control group includes houses located beyond 1 mile of the solar farm. The dependent
variable is the natural log of sales price for houses sold between 1997 and 2017. All models
include house, neighborhood, and location characteristics. Finally, robust standard errors
clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.1.
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